New process technology for thermoset fiber reinforced composite materials with the D-TSC process.

Frank Mack
Manager Engineering Plastics
Process Technology
Coperion Werner & Pfleiderer
Content.

New process technology for thermoset fiber reinforced composites with the D-TSC process.

1. Motivation, idea und targets
2. D-LFT process
3. Working principle of co-rotating twin screw extruder ZSK
4. Processing of thermoset fiber reinforced composite materials on a ZSK
5. Summary
Motivation.

- In automotive applications thermoset materials have to compete with thermoplastic composite materials which are processed continuously.

  ⇒ The DaimlerChrysler AG together with the machine and plant manufacturer Coperion Werner & Pfleiderer and DSM Composite Resins as manufacturer of thermoset resins have faced up to this challenge.
Idea of the project:

Development of a material and process where thermoset composite materials can be extruded in a cost-effective and stabil process and where they can be molded directly into parts.

The advantage in quality and price by using a continuous process should benefit also in thermoset fiber reinforced composite materials.

⇒ ETAA (Extrusion of Thermosets for Automotive Applications)
Idea.

- Use of a co-rotating twin screw extruder (ZSK) for compounding of the composite material.
- Feeding of all components via feeding systems (gravimetric feeders, pumps, ZSB, etc).
- Impregnation of the glass fibers in the ZSK.
- Areal and temporal combination of extrusion and molding.
- Option: production of storable semi-finished parts
- Use of compression molding and injection molding process.
Targets.

- Development of a continuous process for production of thermoset composite materials which is competitive to the efficiency of thermoplastic composite materials.

- Reduction of many single process steps (mixing of the paste, knife application, sprinkling of glass fibers, fulling, thickening, etc.) and reduction of the complexity of the different interfering process parameters of the production process.
Content.

New process technology for thermoset fiber reinforced composites with the D-TSC process.

1. Motivation, idea und targets
2. D-LFT process
3. Working principle of co-rotating twin screw extruder ZSK
4. Processing of thermoset fiber reinforced composite materials on a ZSK
5. Summary
D-LFT-process.

1 Polymer
2 Gravimetric feeder
3 Glass fiber roving
4 Maindrive
5 Co-rotating twin screw extruder ZSK
6 Degassing
7 Cutting unit
8 Separation unit
9 Handling system
10 Mold
Content.

New process technology for thermoset fiber reinforced composites with the D-TSC process.
1. Motivation, idea und targets
2. D-LFT process
3. Working principle of co-rotating twin screw extruders ZSK
4. Processing of thermoset fiber reinforced composite materials on a ZSK
5. Summary
Working principle of a co-rotating twin screw extruder ZSK.

- Motor
- Clutch
- Gearbox
- Process section
- Die

Operating principle

Modular design of barrel section and screw elements
Modular design of barrel section and screw elements.
Diameter ratio. Flight depth and free volume.

MEGAcompounder
\[ \frac{D_A}{D_i} = 1.55 \]

MEGAvolume
\[ \frac{D_A}{D_i} = 1.8 \]
Content.

New process technology for thermoset fiber reinforced composites with the D-TSC process.

1. Motivation, idea und targets
2. D-LFT process
3. Working principle of co-rotating twin screw extruders ZSK
4. Processing of thermoset fiber reinforced composite materials on a ZSK
5. Summary
ZSK-working areas: torque limited and intake limited products.

ZSK MEGAvolume
ZSK MEGAcompounder

Standardized throughput

Specific energy input SEI [kWh/kg]

Powder coating
Katalysator masses
Insulation foils, sealings
Cable masses (HFFR)
Thermosets
ABS / SAN Blend
PC/ABS Blend
PA + 40% Glass
PP/wood (WPC)
PP + 40% Talkum, compacted
PP + 40% Talkum, fine

m * 9550 / n * a³ [kg/h/min⁻¹/cm³]

SEI [kWh/kg]

PE
PP

SPE ACCE Sept. 11-13, 2007
# Requirements to the ZSK

## D-LFT (Direct-Longfiber Thermoplast)
- Melting of PP
- Homogenization und dispersing of the additives in the melt
- Glass fiber intake
- Cutting, dispersing and impregnating of the fibers with melt

<table>
<thead>
<tr>
<th>Torque necessary</th>
<th>Mc-machines</th>
</tr>
</thead>
</table>

## D-TSC (Direct-Thermoset Compounding)
- Homogenization und dispersing of high amounts of fillers and mold release agent with resin
- Glass fiber intake
- Cutting, dispersing and impregnating of the fibers with melt

<table>
<thead>
<tr>
<th>Volume necessary</th>
<th>Mv-machines</th>
</tr>
</thead>
</table>

It is necessary to adapt the process to the homogenization and dispersing of the filler and mold release agent in the resin to get a homogeneous paste.
Order of feeding the raw materials.

Process sections

<table>
<thead>
<tr>
<th>Feeding, conveying</th>
<th>Mixing, Homogenization</th>
<th>Conveying, Feeding</th>
<th>Mixing</th>
<th>Feeding of glass fibers</th>
<th>Cutting</th>
<th>Dispersing</th>
<th>Impregnating</th>
<th>Degassing</th>
<th>Discharge pressure built up</th>
</tr>
</thead>
</table>
Different dies and discharge forms.

- Tube die
- Slit die (100mm)
- Slit die (200mm)
Experimental tool.
Fiber impregnation and homogeneity.

Microscopy of the fiber impregnation

Measurement of homogeneity of the paste
Content.

New process technology for thermoset fiber reinforced composites with the D-TSC process.

1. Motivation, idea und targets
2. D-LFT process
3. Working principle of co-rotating twin screw extruders ZSK
4. Processing of thermoset fiber reinforced composite materials on a ZSK
5. Summary
Summary.

- Series of experiments for processing thermoset fiber reinforced composite materials on the ZSK.

- Adapting of a twin screw extruder on the process of thermoset materials. Feeding of the raw materials with continuous gravimetric feeders.

- Impregnation of the glass fibers in the extruder, discharge of a fiber reinforced composite material.

- Pilot plant for the process chain at the OEM.

- Areal and temporal combination of extrusion and molding process was realized.
New process technology for thermoset fiber reinforced composite materials with the D-TSC process.

Thank you for your attention!

Frank Mack  
Manager Engineering Plastics Process Technology  
Coperion Werner & Pfleiderer

Contact:  
Frank.Mack@Coperion.com  
Tel.: +49 (0)711 897-3169  
Fax.: +49 (0)711 897-3978