Linear Polyphenylene Sulfide (PPS) for Thermoplastic Composites

Harsh Bhagat
Ticona Engineering Polymers
September, 2008
Contents

- Fortron® Linear PPS
 - Chemistry
 - Properties
- Long Fiber Molding Compounds
- Fortron® PPS Continuous Fiber Thermoplastic Composites
 - Processes and Applications
- Summary and Questions
Fortron® PPS
Summary – Structure and Properties

- Linear, semicrystalline
 - Tg 85°C, TM 285°C
 - Density 1.35 g/cm³
- Inherently flame resistant
 - UL94-V0, LOI > 45
- Chemical resistance – dimensional stability
 - Fuels, oils, solvents
 - Water-glycol
- Easy to process
 - Injection molding
 - Extrusion

Polyphenylenesulfide (PPS)
Poly(thio – 1,4 - phenylene)
Fortron® PPS Has No Known Solvent

- Chemical resistance with minimal attack or swelling even at elevated temperatures
 - Resists: acids/bases pH 2 to 12
 - Resists: strong bleaches
 - Resists: auto fluids – coolants, transmission & brake
 - Resists: gas & alternate fuels (methanol, ethanol)
 - Resists: hydrolysis
Fortron® PPS Dimensional Stability

- Extremely low moisture absorption – 0.02%
- Minimal effect of temperature
- CLTE – 19 x 10^-6 /°C (6165A4)
- Precision molding
- Low shrinkage – 0.3% (6165A4)
- Creep resistance

For Precision Parts Even at Elevated Temperatures
Water Absorption

<table>
<thead>
<tr>
<th>Material</th>
<th>Water Absorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS</td>
<td>0.02</td>
</tr>
<tr>
<td>PEI</td>
<td>1.25</td>
</tr>
<tr>
<td>PEEK</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Top Fortron® PPS Segments

- Semiconductor
- Industrial
- EE & Sensors
- Automotive
- Fibers
- Composites
Fortron® PPS
Automotive: Under the Hood

- Throttle Body – 1140L4
- Inlet Tank for CAC 1140L4
- Crankshaft Flange – 4332L6
- Water Pump 6165A6, 1140L6
- Water Pump Impeller – 1140L4
Fortron® PPS
Automotive: Fuel Applications

Fortron PPS was selected for:

- Resistance to all sorts of fuels including auto-oxidized fuels up to 120°C
- Excellent mechanical and impact strength at elevated temperatures
- Inherently flame resistant (UL 94 V-0 down to 0.4 mm thickness)
- Lower specific gravity than metal
- Simplified fabrication by eliminating secondary operations
Fortron® PPS 1140L4
Water Pump Impellers

- The challenge:
 - Improve pump efficiency
 - Decrease water pump cost
 - Improve fuel efficiency (Lower HP requirements)

- The innovation:
 - Exotic blade shapes improve pump efficiency by 10-20% vs. sheet metal
 - Fortron PPS has required chemical / hydrolysis resistance to OAT coolants
 - Excellent fatigue properties withstand pressure cycles
 - Excellent erosion resistance
Fortron® PPS
Injection Blow Molded Applications

Hot Air and Corrosive Fluid Applications

Diesel Engine Charge Air Duct
15% Glass Fiber Reinforced Linear PPS
Long Fiber Molding Compounds
Celstran® LFT Compared to Other Common Processes

Advantages of Celstran Long Fiber Pellets vs. Short Fiber

- Higher mechanical properties combined with significantly higher impact strength
- Reduced creep tendency
- Lower warpage and better dimensional stability

Advantages of Celstran Long Fiber Pellets vs. Wire Coated Long Fibers

- More homogeneous fiber distribution
- Higher impact strength
- Better surface / part appearance
- Lower wear on cylinder and tool

Celstran Granule Schematic

Note the uniform fiber distribution surrounded by polymer matrix throughout the whole pellet.
Pellet Cross Section
Celstran® Glass Fiber
PPS Material Properties

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Resin</th>
<th>Fiber %</th>
<th>Specific Gravity</th>
<th>ASTM Method:</th>
<th>Tensile</th>
<th>Flexural</th>
<th>Notched Izod</th>
<th>Comp. Strength</th>
<th>DTUL °F @ 264 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS-GF30-01</td>
<td>Polyphenylene Sulfide</td>
<td>30%</td>
<td>1.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS-GF40-01</td>
<td>Polyphenylene Sulfide</td>
<td>40%</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS-GF50-01</td>
<td>Polyphenylene Sulfide</td>
<td>50%</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fortron® PPS for Continuous Fiber Thermoplastic Composites
Why Thermoplastic PPS Composites vs. Thermoset Composites?

Improved Properties
- Tougher, good fatigue performance
 - 4x tougher than toughened epoxies
- Damage tolerant
- Insensitive to moisture
- High temperature performance
- Very low flammability, smoke, toxicity
- Low residual stress in molded parts
- Excellent chemical resistance

Improved Processing
- Eliminate bagging materials and labor
 - May also eliminate kitting and debulking steps and equipment
- Eliminating autoclave possible
 - Cost, space and bottleneck issues
- Rapid processing vs. thermosets
- Can be reformed
- Simple, longer-lasting tool
- Fusion bonding eliminates fasteners and adhesives
 - Reduces cost and weight

Green processing
- Recyclable
- No VOCs in processing
- Less process scrap
Thermoplastic Composite Matrix Cost Advantage

- The material cost for a thermoplastic matrix might be equal or even higher.
- Lower cost for handling, processing and assembly can lead to a substantial advantage in total cost.
T300 3K Carbon Fabric/Fortron® PPS Composite Property Data*

- Values are in ksi
- Warp direction data
- Average values - Tested per Mil-R-17

Steady and Stable Across Use Temperature

*TenCate CETEX Data
T300 3K Carbon Fabric/ Fortron® PPS Composite Property Data*

- Values are in msi
- Warp direction data
- Average values - Tested per Mil-R-17

Steady and Stable Across Use Temperature

*TenCate CETEX Data
Thermoplastic Composite Processing Technologies

- Pultrusion
- Continuous laminating
- Compression molding
- Thermoforming
- Automated tape laying/fiber placement
- Bladder molding
Process Cost vs. Part Complexity for Continuous Fiber Reinforced Parts

Source: Composite Market Reports
Additional Thermoplastic Composite Manufacturing Processes

Automated Dynamics – Fiber Placement

Lingol – Thermoforming

FiberForge – Compression Molding
Advantages of Thermoplastic Composite Automation Processes

- Accurate fiber placement at any angle
- Material savings
- Labor savings
- Quality improvement
- Automatic debulking
- Reduced manufacturing space
- Reduced assembly costs
Airbus A340/A380
Leading Edge Process

Example for Thermoplastic Composite Value Chain in Aircraft Industries
Station 1: Film Production

Starting product:

Linear PPS pellets
- Temperature stability
- High level of hardness and impact strength
- Excellent resistance to chemicals
- Broad temperature range
- Inherent flame resistance

Film production

Station 1 – Lipp-Terler GmbH in Gaflenz near Linz, Austria. The pellets are converted into films with a thickness of 50 to 200 µm. The film leaves the special plant in rolls of 100 kg in a flawless state, crystal clear and with the required characteristics with regard to strength and dimensional stability.
Station 2: Composite Production

Starting product:
Basic Matrix of Linear PPS / Carbon Fiber Fabric

Laminate production

Station 2 – Ten Cate Advanced Composites BV, Nijverdal, Netherlands. The carbon fiber fabric and linear PPS film are bonded together in a press, under high pressure and high temperature, into high-strength, dimensionally stable and resistant composites in the desired layer thickness.
Station 3: Thermoforming

Starting product:
Composite plates in the required size

Shaping
Station 3 – Fokker Special Products, Hoogeveen, Netherlands.
The composite plates are pre-heated and subsequently shaped into the desired form under pressure and high temperature.
Station 4: Assembly

Starting product:
Front wing portion
(Weight of the parts is 20 percent less than aluminum)

Assembly
Station 4 – Airbus.
The completed construction element is mounted at the intended location.
Technology Breakthrough: Fixed Wing Leading Edge Airbus A340 and A380

- Welded structure
- Low weight and low cost monolithic design
 - 200 kg weight reduction on A380
Technology Validation – Carbon/PPS: Fokker 50 Undercarriage Door

- Press-formed ribs and spars
- Welded assembly
- Qualified carbon / PPS material
- Certified by the Airworthiness Authorities
- Flown on KLM aircraft
Metal Substitution with Linear PPS Composite Resulted in 20–50% Lighter Components

Keel Beam Application

Multi-Technology Concept:
- Panels and Spars:
 - Thermoset Prepreg Lay-Up,
- TP Ribs and Angles
- Alu. and Titanium Brackets
Airbus A340 500/600 Aileron
Thermoplastic Composite Parts

Edge Ribs
Main Ribs
Leading Edge Ribs, Angles & Panels
Weight Reduction – The Vision
Fortron® PPS in Aircraft Interior

Supporting Various Interior Applications

- Seat frames
- Ducting
- Panels
- Brackets
- Ribs
- Fasteners

46% Lighter Seat Parts Due to Metal Substitution
Summary

- Fortron® Linear PPS is a demonstrated, producible, low-cost, high-performance thermoplastic for aerospace composite applications
 - Aircraft interior and exterior applications
 - Flammability, Smoke, and Toxicity Performance (FST)
 - Corrosion resistant environments
 - High temperature usage
 - Wide variety of forms available

- Industrial thermoplastics composites manufacturing is a proven production process
 - Used in production of critical aerospace structures
Fortron® PPS
for
Thermoplastic Composites

Harsh Bhagat
Senior Design Engineer
Harsh.Bhagat@ticona.com
(248) 340-7460

Michael Favaloro
Technical Marketing Specialist – Fortron® PPS Composites
Michael.Favaloro@ticona.com
978) 270-6011

Walt Maruszczak
Market Development Engineer - Fortron® PPS
W.Maruszczak@ticona.com
(248) 656-4848
Information is current as of July 30, 2008 and is subject to change without notice.

The information contained herein should not be construed as a promise or guarantee of specific properties of our products. Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use.

Any existing intellectual property rights must be observed.

© 2008 Ticona. Except as otherwise noted, trademarks are owned by Ticona or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.
Backup slides
Fortron® PPS
Extrusion: Film, Fiber, Netting, etc.

Aircraft Composite

High Tenacity Monofilament

Filter Netting

Stock Shapes

CPI Filter
Applications: Sensors
ABS Sensor Components

- Dimensional stability
- Creep resistance
- Corrosion resistance within the required temperature range