Innovative PPS Blow-Molded Air Duct for Turbocharged Diesel Engine

High Performance Polymers for Automotive Powertrain Applications

Duane Emerson
Ticona Engineering Polymers
SPE ACCE Conference
September 15-16, 2009
Challenge to the Automotive Industry

Increasing Demands

- Impact on the environment
- Dependence on fossil fuels
- Assuring the viability of our business
One EU Solution…

Diesel Engine Technology

- TDI technology
- 30-35% more efficient than gasoline engine
- Improvements in fuel – ULSD, B5, B20
- [Since 2006] > 50% new EU car registrations were diesel powered

…Continues to Evolve

- Reducing complexity
- Reducing weight
- Reducing cost
Röchling and VW Golf TDI

Product Challenges to Charge Air Duct Design

Product
- Reducing weight
- Reducing cost

Performance
- New "system" demands from turbocharger
 - Increase in charge air pressure: > 2 bar (29 psi)
 - Increase in charge air temperature: > 200°C
Test Conditions for Charge Air Duct

Pressure Pulsation Test According to VW

- Temperature of ambient air: 125°C ± 5°C
- Long-term test
 - Temperature of test medium: 205°C ± 5°C
 - Pressure pulsation test at: 1.2 bar ± 1.1 bar (over pressure)
 - Number of pressure cycles: 1,000,000 cycles
- Short-term test
 - Temperature of test medium: 230°C ± 5°C
 - Pressure pulsation test at: 1.4 bar ± 1.3 bar (over pressure)
 - Number of pressure cycles: 100,000 cycles
Airflow Through a Turbocharged Engine

1 – Intake air
2 – Clean air
3 – Charge air duct (hot side)
4 – Charge air duct (cold side)

A – Air filter
B – Turbo charger
C – Charge air cooler
Charge Air Duct – Design Challenges

1. Blowmolding charge air duct

2. Bracket material, and attachment

3. Coupling system (rubber hose)
Design Solution…

Re-design of VW Golf Charge Air Duct (hot side)

- Replacing AL with Fortron® PPS
- Reduce cost through innovative processing techniques
 - optimizing process methodology
 - increased manufacturing efficiencies
- Improved bracket joints through in-mold processing technology
Material Solution…

PPS

- Innovative bonding process during PPS blow molding operation
- Design concept involved two different materials
- Ticona developed two PPS grades for application
- Result – Improved joint strength between the brackets and the blow molded air duct
Fortron® PPS Properties

- Continuous service temperature up to 240°C
- Very good dimensional stability
- Inherent flame resistance
- Excellent resistance to automotive “chemicals” (i.e., fuels, coolants, UTH fluids, greases, etc.)
- High hardness and stiffness
- Extremely low creep behavior
- Low CLTE, comparable to aluminum
- Very low water absorption
- Ease of processing
Prior History – Fortron PPS and CAC

Charge Air Cooler Tank

Requirements:
- Replace aluminum
- Temperature resistance
- Pressure pulsation tests at 220°C over 500,000 cycles (overpressure max. 2.1 bar)
- Chemical resistance
- Sufficient toughness for crimping process

OEM: MAN
Prior History – Blow Molding Fortron PPS

- Linear PPS blow molding grade
- High melt strength
- Medium flow
- Excellent property profile
- Designed for automotive and general industry applications
Blow Molding with Fortron 1115L0

Drying

\[T_{Dr} = 80 - 100°C / 3 - 4 \text{ h} \]

Cylinder Temperatures

Feeding: 120 - 180°C*
Cylinder: 290 – 310°C
Head: 280 – 300°C
Nozzle: 280 – 290°C

* Depends on design of feeding zone

Mold Wall Temperature: 140 - 150°C
Fortron 1115L0

Product Profile

- Linear PPS blow molding grade
- 15% glass fiber reinforced
- High melt strength
- Designed for standard blow molding as well as suction blow molding
- Excellent properties
- Weldable with all standard welding technologies
Key Design Challenge!
Joining Brackets to the Air Duct

1. Welding
2. “JectBonding™*” directly in blow molding tool
3. “JectBonding™*” in a second operation (with injection molding tool)

*patented by Röchling Automotive
Advantages of “JectBonding”
A New In-mold Assembly Process

JectBonding into the blow molding tool
- Improved adhesion - part has not cooled down
- No tool change necessary
- Shorter cycle times
- Improved appearance
- Robust process

Number of injection bondable elements is limited

JectBonding into a separate injection molding tool
- Excellent adhesion - surface of carrier part is partially melted
- High joint strength
- High degree of design freedom
- Significantly improved appearance

Additional injection molding tool necessary

Consistent Part Geometry, Scrap Reduction, Cost Savings
Röchling Charge Air Duct

OEM: VW

Materials: Fortron® 1115L0, and FX4330T7

- Passenger car diesel engines
- Suitable up to 230°C
- 30% weight reduction
- 25% cost savings
- First commercial PPS blow molding application in car series (VW Golf)
Special Acknowledgements

- Röchling Automotive
- Matthias Schuemann, Fortron® PPS Marketing Manager, Ticona-Europe
Thank you for your attention

Questions?

For Additional Information:

Duane Emerson
Duane.Emerson@ticona.com
(248) 340-7487
www.ticona.com/fortronpps
NOTICE TO USERS:

Information is current as of August 21, 2009 and is subject to change without notice.

The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products.

Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use.

Any existing intellectual property rights must be observed.

© 2009 Ticona. Except as otherwise noted, trademarks are owned by Ticona or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. Ticona is a business of Celanese Corporation.