Development of PCM* technology

* Prepreg Compression Molding

Koichi Akiyama
Toyohashi Research Laboratories
Composite Material Development Center

MITSUBISHI RAYON CO., LTD.
CFRP Molding Process

Mechanical Properties

- Low
- High

Productivity

- Low
- High

Moldability

- Low
- High

Small Volume

- Autoclave
- Oven
- RTM
- VaRTM

Mid Volume

- PCM
- Advanced RTM

High Volume

- CFRP Mass Production
- GMT
- LFT-D
- LFP
- Injection

Remark

- Thermoset
- Thermoplastic

Mass Production

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
High cycle CFRP molding process

- PCM has a potential for CFRP mass production.

PCM (Prepreg Compression Molding)

Newly developed fast curing prepreg is preformed, and then cured in heated steel tool. Short mold cycle times.

Advanced RTM

Dry fabric is charged in heated tool, then resin is injected into the mold. Cycle time can be shortened with fast curing resin system.
Comparison between PCM and RTM

<table>
<thead>
<tr>
<th></th>
<th>PCM (Prepreg Compression Molding)</th>
<th>Advanced RTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Compression moldable fast curing prepreg</td>
<td>Fabric (NCF, multi-axial F etc.)</td>
</tr>
<tr>
<td></td>
<td>Co-molding with SMC is possible</td>
<td>Chopped fiber mat, Resin</td>
</tr>
<tr>
<td>Typical Fiber content (Vf)</td>
<td>Up to 65%</td>
<td>Up to 45%</td>
</tr>
<tr>
<td>Typical Resin system</td>
<td>Epoxy resin</td>
<td>Epoxy resin</td>
</tr>
<tr>
<td>Parts Geometry</td>
<td>PCM; Relatively simple shape</td>
<td>Relatively complex geometry</td>
</tr>
<tr>
<td></td>
<td>Uniform thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hybrid; Relatively complex geometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ribs and bosses etc.</td>
<td></td>
</tr>
<tr>
<td>Preform</td>
<td>Prepreg; Near net shape preform</td>
<td>Fabric; Net shape preform</td>
</tr>
<tr>
<td>Tool</td>
<td>Steel tool</td>
<td>Steel tool</td>
</tr>
<tr>
<td>Molding pressure</td>
<td>3-10MPa</td>
<td>0.5MPa (5MPa for HP RTM)</td>
</tr>
<tr>
<td>Typical cycle time</td>
<td>5 minutes or longer</td>
<td>10 minutes or longer</td>
</tr>
<tr>
<td>Equipments</td>
<td>Preforming system</td>
<td>Preforming system</td>
</tr>
<tr>
<td></td>
<td>High tonnage press</td>
<td>Injection machine</td>
</tr>
<tr>
<td></td>
<td>Preforming system</td>
<td>Press (High tonnage for HP RTM)</td>
</tr>
<tr>
<td>Metal Insert</td>
<td>Possible in hybrid molding</td>
<td>Possible</td>
</tr>
<tr>
<td>Core Insert molding</td>
<td>Possible in simple parts geometry</td>
<td>Possible (Difficult in HP-RTM)</td>
</tr>
</tbody>
</table>
Cost comparison

- Total manufacturing cost using PCM / Advanced RTM is lower than the one using autoclave where production volume is over 200 parts per a month.
- PCM has cost advantage over advanced RTM in higher volume production.

Cost index vs Production Volume

Cost index comparison
@2400 part per month

Cost study
The size of parts; 1200X700, thickness; 1.1mm
Cycle time; Autoclave 120 min., Advanced RTM 15 min., PCM 10 min.
PCM (Prepreg Compression Molding)

- Newly developed fast curing prepreg
 - 2 minute cure at 150°C (302°F) (the shortest cure time condition) or 3 minutes at 140°C (284°F).
 - Product shelf-life is minimum 40 days < 20°C (68°F) storage.
 - Resin system optimized for both preform and compression molding processes.
 - Controlled Viscosity at elevated temperature
 - Suitable tackiness at room temperature
 - Equivalent mechanical properties compared to conventional autoclave technology with standard Prepreg
 - Tg > 160°C.
PCM (Prepreg Compression Molding)

- Molding process development
 - Preform design matched for compression molding
 - Quick preform process
 - Optimized tool design for PCM
 - Molding condition optimized for PCM
 - PCM/CF-SMC co-molding

- Application development studies
 - Automotive outer body panels
 - Automotive structural parts
Prepreg for PCM

<table>
<thead>
<tr>
<th>Properties</th>
<th>Developed prepreg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R 02</td>
</tr>
<tr>
<td>Resin type</td>
<td>Bisphenol A type Epoxy resin</td>
</tr>
<tr>
<td>Gel time @ 140 C min.</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum cure time @ 140 C min.</td>
<td>5.0</td>
</tr>
<tr>
<td>CF reinforcement</td>
<td>Typical grade</td>
</tr>
<tr>
<td>1)</td>
<td>UD</td>
</tr>
<tr>
<td>2)</td>
<td>Fabric 2)</td>
</tr>
<tr>
<td>FAW g/m²</td>
<td>250 or 125</td>
</tr>
<tr>
<td>Resin Content wt%</td>
<td>30</td>
</tr>
<tr>
<td>CF Vf vol%</td>
<td>59</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.54</td>
</tr>
<tr>
<td>Other advantage</td>
<td>Good Surface</td>
</tr>
</tbody>
</table>

1) TR50S carbon fiber from Mitsubishi Rayon Co., Ltd. is used for all prepgels
 Tensile strength; 4900 MPa, Modulus; 240 GPa, Elongation; 2.0%

2) Plain, twill and Satin fabric can be used.
Viscosity control

- Resin viscosity at elevated temperature was optimized for compression molding.
 - Low viscosity of conventional materials at elevated temperature results in excessive resin flow

Viscosity at elevated temperature

Problem caused by low resin viscosity
- Bleed out of cavity
- Inconsistent mechanical results
- Fiber distortion
- Poor thickness uniformity
- Poor cosmetics
- Demolding issue
Fast curing formulation

- Resin formulation has been optimized for fast curing
 - Optimized combination of resins and curing agents
 - Curing behavior are evaluated by Curelastometer
 - Curelastometer can measure/monitor resin behavior under conditions similar to actual molding.

![Graph showing torque vs. time for different resins: R 03 and R 02.](chart)

Curelastometer test

- Press
- Heated Dice (140°C)
- Resin sample
- Detect Torque

Good Chemistry for Tomorrow®
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
Mechanical properties

<table>
<thead>
<tr>
<th></th>
<th>General Grade</th>
<th>R 02</th>
<th>R 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>1720</td>
<td>1631</td>
<td>1558</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>125</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>1.40</td>
<td>1.29</td>
<td>1.24</td>
</tr>
<tr>
<td>0 degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>2570</td>
<td>2820</td>
<td>2659</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>124</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>2.50</td>
<td>2.64</td>
<td>2.36</td>
</tr>
<tr>
<td>90 degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>120</td>
<td>123</td>
<td>102</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>9.1</td>
<td>9.3</td>
<td>8.6</td>
</tr>
<tr>
<td>Strain (%)</td>
<td>1.33</td>
<td>1.37</td>
<td>1.03</td>
</tr>
<tr>
<td>Tensile Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>2650</td>
<td>2421</td>
<td>2096</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>138</td>
<td>141</td>
<td>138</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>1.90</td>
<td>1.80</td>
<td>1.70</td>
</tr>
<tr>
<td>Shear strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILSS</td>
<td>104</td>
<td>98</td>
<td>84</td>
</tr>
</tbody>
</table>

Notes

1) UD test specimens were molded at 140 C and 10 MPa. Cure time is 5 minutes. General purpose prepreg is molded by autoclave with standard curing condition.

2) measured at room temperature RT. n=5

3) 90 degree Flexural test. ILSS were not normalized. 0 degree flexural was normalized to Vf 60%.
0 degree Flexural strength/modulus

![Graph showing flexural strength and modulus for different samples.]

- Strength (MPa):
 - Control: ~1500 MPa
 - R02: ~1500 MPa
 - R03: ~1500 MPa

- Modulus (GPa):
 - Control: ~140 GPa
 - R02: ~140 GPa
 - R03: ~140 GPa

Legend:
- Strength
- Modulus
90 degree Flexural strength/modulus

- **Strength (MPa)**: Control, R02, R03
- **Modulus (GPa)**

- **Legend**: Strength - Solid, Modulus - Dashed Line
0 degree Tensile strength/modulus

![Graph showing 0 degree Tensile strength/modulus for Control, R02, and R03. Strength is measured in MPa, and Modulus is measured in GPa. The graph compares the strength and modulus of the materials.]
Mechanical Properties of Laminates

- Mechanical properties of R03 laminates
 - R02 laminates showed similar properties

<table>
<thead>
<tr>
<th></th>
<th>Mechanical Test</th>
<th>Unidirectional</th>
<th>Cross ply</th>
<th>Quasi-isotropic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td>Tensile</td>
<td>Strength MPa</td>
<td>2096</td>
<td>1128</td>
<td>700</td>
</tr>
<tr>
<td>0 deg.</td>
<td>Modulus GPa</td>
<td>138</td>
<td>73</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Elongation %</td>
<td>1.70</td>
<td>1.53</td>
<td>1.46</td>
</tr>
<tr>
<td>Flexural</td>
<td>Strength MPa</td>
<td>1558</td>
<td>1195</td>
<td>795</td>
</tr>
<tr>
<td>0 deg.</td>
<td>Modulus GPa</td>
<td>126</td>
<td>89</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Strain %</td>
<td>1.24</td>
<td>1.34</td>
<td>1.50</td>
</tr>
<tr>
<td>90 deg.</td>
<td>Strength MPa</td>
<td>102</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Modulus GPa</td>
<td>8.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Strain %</td>
<td>1.03</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Thickness of unidirectional test specimen is 2.0mm
Cross plies test specimen is laminate of (0/90/0/90)s, thickness is 1.6 mm
Quasi-isotropic test specimen is laminate of (45/0/-45/90)s, thickness is 1.6 mm
Thermal Analysis

- E’ Tg of R 03 is over 160° C
 - R 03 can be used for high temperature applications

DMA

- **Prepreg Control R 02 R 03**
 - G’-Tg (℃): 127, 125, 165
 - tan δ (℃): 148, 154, 186

<table>
<thead>
<tr>
<th>Prepreg</th>
<th>Control</th>
<th>R 02</th>
<th>R 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>G’-Tg (℃)</td>
<td>127</td>
<td>125</td>
<td>165</td>
</tr>
<tr>
<td>tan δ (℃)</td>
<td>148</td>
<td>154</td>
<td>186</td>
</tr>
</tbody>
</table>

Molding Condition: 140 C×5min 8MPa
Control prepreg is cured by autoclave
Temperature Dependence of Mechanical Properties

- R 03 maintains high mechanical properties at elevated temperatures.

Flexural Properties of UD sample

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>-30</th>
<th>25</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>2140</td>
<td>1631</td>
<td>1468</td>
<td>1321</td>
<td>989</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>126</td>
<td>126</td>
<td>128</td>
<td>128</td>
<td>123</td>
</tr>
<tr>
<td>R 03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>2047</td>
<td>1558</td>
<td>1352</td>
<td>1338</td>
<td>1195</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>125</td>
<td>126</td>
<td>128</td>
<td>127</td>
<td>126</td>
</tr>
</tbody>
</table>

Flexural Properties of Laminate (Cross Ply; 0/90/0/90/0)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>-30</th>
<th>25</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>1570</td>
<td>1248</td>
<td>1230</td>
<td>1053</td>
<td>955</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>90</td>
<td>88</td>
<td>91</td>
<td>89</td>
<td>91</td>
</tr>
<tr>
<td>R 03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength (MPa)</td>
<td>1671</td>
<td>1195</td>
<td>1070</td>
<td>955</td>
<td>988</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>90</td>
<td>89</td>
<td>91</td>
<td>91</td>
<td>92</td>
</tr>
</tbody>
</table>
0 degree Flexural Strength of UD test specimens at various temperatures.
Temperature Dependence of Flexural Modulus

- 0 degree Flexural Strength of laminate at various temperatures

![Graph showing the relationship between strength and temperature for laminate samples R02 and R03. The graph indicates a decrease in strength with increasing temperature.](image-url)
PCM Molding Process

100% mold coverage, preform recommended

Charge

Press

De-mold

PCM
UD and/or Fabric Prepreg

Hybrid Molding
UD and/or Fabric Prepreg + SMC

Molds complex shape with SMC

SMC
Preform process

- Cutting patterns, preform, and compression molding are consecutive processes.
 - It is possible to produce one piece every 10 minutes.

Process simulation:
Deck lid outer panel
750X1200mm
UD Prepreg 5 plies, 1.1mm
Cure time; 5 minutes

<table>
<thead>
<tr>
<th>Process</th>
<th>Cycle Time (minute)</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepreg Pattern Cut</td>
<td>10</td>
<td>Cutting plotter</td>
</tr>
</tbody>
</table>
| Preform | 10 | Light press (such as air cylinder press)
| | | Chemical wood tool
| | | IR heater
| | | Vacuum bagging system (if necessary) |
| Compression Molding | 10 | High Tonnage hydraulic press
| | | (Typical Molding Pressure; 4-10MPa)
| | | Steel tool |
Deck lid model development

CFRP deck lid model parts was designed.
- Outer panel; R 02 UD prepreg
 - Cross ply (0/90/0/90/0) 1.1mm thickness
- Inner panel; CF-SMC
 - 1.5 mm thickness vinyl ester carbon fiber SMC parts
 - Volume fraction of carbon fiber 45%
- Bonded with epoxy structural adhesive
Example of FEM Analysis

- **Stiffness**
 - Load: 196 kN, Area of load: 300X400mm
 - CFRP-Sample: Max. Displacement: 0.61mm
 - Aluminum: Max. Displacement: 2.59mm

- **Anti-dent**
 - Load: 686 N, Area of load: 50 mm²
 - CFRP-Sample: Max. Displacement: 12.4mm
 - Aluminum: Max. Displacement: 14.6mm
Evaluation of CFRP Deck Lid

- CFRP deck lid can reduce weight by 38% comparing with aluminum model
 - Stiffness, torsion rigidity, anti-dent, etc. are equal to aluminum model by FEM analysis.
 - CFRP deck lid were evaluated in several different durability tests and showed similar results to aluminum part.
 - Bonded parts was 2.4 kg and achieved 38% weight saving comparing with aluminum deck lid.
A quarter part of engine hood was developed to demonstrate feasibility of PCM body panels.

- PCM outer and CF-SMC inner panels were bonded to produce a body panel structure consisting of two parts.
- CFRP engine hood is 63% lighter than steel hood.

SUBURU Impreza
Steel hood; 14.5 kg
CFRP hood; 5.3 kg
(Whole hood)
Engine hood model part development

- Outer panel molded by PCM has very smooth surface and no porosity
 - Good paintability and no paint blisters were observed

- Body color painted part
 - R 02 UD Prepreg
 - Cross ply (0/90/0/90/0) 1.1mm thick
 - Paint; Primer/Base/Clear Top
 - Totally 100 micrometer thick
 - Three bake at 120°C for 30 minutes

- Clear coat painted carbon fabric look part
 - R 02 3K twill prepreg
 - Twill + Cross ply totally 1.3mm thick
 - Paint: Clear Primer/Clear Top
 - Totally 70 micrometer thick
 - One bake at 120°C for 30 minutes
Surface Quality of PCM parts

- R 02 UD Prepreg can achieve Class A surface.
 - Wave scan index of parts molded by PCM is similar to that of typical class A SMC parts.

UD PCM; Body color paint
Fabric PCM; Clear coat paint

Wave scan index was measured by Wave Scan-T from BYK-Chemie
PCM/SMC hybrid molding process

- Co-molding of Prepreg and CF-SMC
 - High performance of Prepreg and moldability of SMC
 - Good adhesion between Prepreg and SMC

CF-SMC was charged on the net shape preform.

Molded part

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
Test specimens were prepared by several different laminate designs.

Flexural properties were evaluated by ASTM D790
- Load was applied on specimens as shown in Figure below.
- Sample size; 25.4X110mm, L/D: 40

Sample name; SMC, SMC/PP, PP/SMC, PP

<table>
<thead>
<tr>
<th></th>
<th>SMC</th>
<th>SMC/PP/SMC</th>
<th>SMC/PP</th>
<th>PP/SMC</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC</td>
<td>2mm</td>
<td>0.45+0.45mm</td>
<td>0.9mm</td>
<td>0.9mm</td>
<td>–</td>
</tr>
<tr>
<td>Prepreg</td>
<td>–</td>
<td>1.1mm</td>
<td>1.1mm</td>
<td>1.1mm</td>
<td>2.2mm</td>
</tr>
<tr>
<td>Laminate</td>
<td>–</td>
<td>0/90/0/90/0</td>
<td>0/90/0/90/0</td>
<td>0/90/0/90/0</td>
<td>(0/90/0/90/0)</td>
</tr>
</tbody>
</table>

(Note) PP; R 02 UD prepreg (Vf 59%), SMC; CF-SMC (Vf 45%)
PCM / CF-SMC molded parts property

- Prepreg on crosshead side of specimens increase modulus.
- Prepreg on support side of specimens increase strength.
- Prepreg reinforcement minimizes variation of mechanical properties.
- 90 degree flexural properties become a little higher using Prepreg as reinforcement.

0 degree Flexural

90 degree Flexural
Core material inserted molding process

- Core (Foam) material can be used in PCM process to make light weight parts.
 - Foam material was wrapped in near net shape preform as a core.
 - Tool was designed not to apply excessive molding pressure on the core material.
 - Applied molding cycle is the same as the one used for PCM process without core material.
 - High stiffness can be achieved without significant weight increase on the parts

Large electric equipment housing
Size; 480X160mm
Thickness; Shell 0.4mm, Core 5mm
Structural model parts development

- Structural floor model parts was developed by PCM
 - Hybrid molding of Prepreg and CF-SMC
 - Prepreg; R 03 cross ply 2.0mm thickness
 - SMC; 0.5mm thick to mold ribs and a boss

Structural floor model
Size: 500X500mm

- Hollow section can be molded with PCM technology

Prepreg assures high strength and parts quality consistency
CF-SMC covers complex shape
Summary

- PCM (Prepreg Compression Molding) technology was developed as a high cycle CFRP molding process.
 - Fast curing Prepreg has been developed for compression molding
 - Cured in two minutes at 150° C
 - Minimum resin bleed during compression molding
 - High mechanical properties thanks to CF Prepreg
 - Preform and molding process have been also studied and developed.

- Model parts development suggests capability of PCM technology as highly suitable for high volume automotive parts production. Examples:
 - Class A outer body panel (quality surface) with painted finish
 - Cosmetic part with carbon fabric appearance
 - Structural parts by PCM/CF-SMC Hybrid molding
To a world standard.

Mitsubishi Rayon is one of the world’s leading suppliers of carbon fibre. Our driving force is our integrated production system – raw material to finished product – which enables us to respond quickly to changing market needs. Our new range of P330 carbon fibres is an example of this response in action with a fibre that offers high strength and resilience plus volume production. The standards set by Mitsubishi are endorsed by customers throughout the world.

Thank you
Acknowledgment

Special Thanks to;
- Yajima Industry Co., Ltd.
 - Cooperation on the quarter engine hood development.
- Challenge Co., Ltd.
 - Cooperation on the core insert molding development.

The other authors
Y. Kazehaya, Y. Kakimoto, Y. Suzumura, Y. Fukuhara and T. Takano
Composite Material Development Center
Mitsubishi Rayon Co., Ltd.