Aerospace and Automotive Seat Frames from Carbon and PPS Thermoplastic Tape

Bob Newill
Ticona Engineering Polymers
Outline

- Background
 - Aerospace and Automotive Seat Frames
 - Trends Supporting Change
 - Composites Benefits and Challenges

- New Thermoplastic Composite Offset
 - PPS/Carbon Tape Preform
 - Processing Options

- Award-Winning Seat Design

- Summary
Background

- Aviation and automotive seat frames
 - Most are multi-piece aluminum designs
 - Frames represent a significant proportion of
 - Total seat weight
 - Total vehicle weight
 - Both industries face significant pressure
 - To reduce vehicle mass and improve fuel efficiency
 - To maintain or reduce production costs
New materials and processes that offer opportunities to reduce weight and cost, and add functionality are welcome, but …

Unit cost vs. aluminum remains a key issue that must be overcome in order for change to occur
Background

Composites could be a good alternative because they offer the opportunity to:

- Reduce weight
- Reduce or eliminate assembly operations
- Add functionality (molded-in features, more complex geometry with better ergonomics, less buzz, squeak and rattle (BSR) etc.)
Background

But...

- Costs must be competitive with aluminum
- Materials must meet cabin requirements for
 - Fire / smoke / toxicity (aerospace)
 - Emissions / fogging (automotive)
Background

- High-performance composite alternatives to aluminum seat frames
 - Continuous carbon fiber reinforcement
 - High-temperature matrix options
 - Thermosets: epoxy, urethane, polyimide
 - Thermoplastics: PEEK, PEKK, PPS, and PEI
 - Each system offers challenges and opportunities
Background

- High-performance thermoset resins
 - Lower base resin but higher prepreg and production costs
 - Lighter than metals with excellent mechanicals and thermal performance
 - Most require halogenated additives to meet flame retardance requirements (achieved at the expense of smoke and toxicity)
 - VOC emissions can also be an issue
 - Scrap and end-of-life parts not easy to recycle
Background

- High-performance thermoset processes
 - Tooling can be low cost depending on process
 - Many processes are slow, hard to automate, and require skilled labor
 - Post-mold finishing can add significant time and expense

Thermosets Offer Definite Benefits vs. Aluminum but Can be Improved Upon
Background

- High-performance thermoplastic resins
 - Higher base resin costs but lower prepreg and production costs
 - Lighter and more damage tolerant than metals or thermosets
 - Some resins inherently flame retarded with low smoke and toxicity
 - All thermoplastics are melt-reprocessable, facilitating in-plant and end-of-life recycling
Background

- High-performance thermoplastic processes
 - Tooling can be more costly but most processes are fast and highly automated, which can lower production costs for medium-to-high volume programs
 - Much less post-mold finishing and more decorating options
 - VOC emissions lower (processing and use)
Background

- If you could combine...
 - Low cost but rapid manufacturing process that allows high-performance assemblies to be produced even at low volumes, with
 - Performance benefits of thermoplastics (lighter, more damage tolerant, recyclable, low VOCs, faster processing, inherent flame resistance with low smoke and toxicity)

That would be a Game-Changing Seat Frame Technology for both Aerospace and Automotive
New Thermoplastic Composite Offset

- High-performance thermoplastic matrix
 - Linear polyphenylene sulfide (PPS)
 - Semi-crystalline for excellent and broad chemical resistance (no known solvent at rm. Temp.)
 - High thermal performance (tg \(=90^\circ\text{C}\), tm\(=285^\circ\text{C}\))
 - Produces stiff but lightweight parts (SG\(=1.34\text{ g/cm}^3\)) with performance similar to aluminum
 - Inherently flame retardant (UL\(^\circ\) 94 V-0; LOI >40)
 - Easy to process; viscosity tunable to different production methods
New Thermoplastic Composite Offset

- High-performance thermoplastic composites
 - PPS offers good wetout of reinforcement
 - Glass, aramid, or carbon fiber
 - Tow or fabric weaves
 - Processable via
 - Hand layup with oven/autoclave consolidation
 - Resin infusion
 - Thermoforming / thermostamping / compression molding
New Thermoplastic Composite Offset

- Developing a low-cost process for thermoplastic composites
 - Must produce high-quality parts in a repeatable process
 - Must be cost effective for small and large parts at low as well as high production volumes
 - Must work with a variety of reinforcements
 - Must be able to produce prepreg / semipreg or preform
New Thermoplastic Composite Offset

- Cost-effective composite form factors
 - PPS / carbon films, tapes, and sheet products
 - Melt PPS and produce crystal film
 - Join PPS film with carbon fiber tow or fabric, consolidate under heat and pressure
 - Form thin films that subsequently are slit and braided
 - Form thick sheets that are cut into blanks and subsequently molded
 - Automated processes with excellent control over fiber positioning
Step 1: PPS Film Production

Starting product:
Linear PPS pellets
- Temperature stability
- High level of hardness and impact strength
- Excellent resistance to chemicals
- Broad temperature range
- Inherent flame resistance

Film production
Station 1 – PPS pellets are converted into films with a thickness of 50 to 200 µm. The film is wound onto rolls of 100 kg in a flawless state, crystal clear and with the required characteristics with regard to strength and dimensional stability.
Step 2: PPS / Carbon Film / Sheet Production

Starting product:
Basic Matrix of Linear PPS / Carbon Fiber Fabric

Laminate production

Step 2 – The carbon fiber fabric and linear PPS film are bonded together in a press, under high pressure and high temperature, into high-strength, dimensionally stable and resistant films or sheet products in the desired thickness for the molding process selected.
Step 3a: PPS / Carbon Braided Preform

PPS / carbon film is
- Slit and braided
- Used in bladder molding, resin infusion or other tape layup processes

Braided preform variables
- Braid angle
- Braid diameter
- Spacing
Step 3b: PPS / Carbon Molding Processes

Starting product:
Composite sheets (blanks) cut to the required size

Thermoforming
(1- or 2-sided tooling, with or without plug or vacuum assist)

Composite Sheet

Positive Side of Tool

Negative Side of Tool

Shaping / Molding
Step 3 – The composite sheets are pre-heated and subsequently shaped into the desired form under pressure and high temperature.
Step 3c: Other PPS / Carbon Molding Processes

Automated Dynamics – Fiber Placement

Lingol – Thermoforming

FiberForge – Compression Molding
Award-Winning Seat Design

- Owing to versatility of preform and molding technologies available for PPS/carbon, many different seat components can be produced.

- To demonstrate the versatility of the technology, a demonstration modular composite seatback and top seat frame were developed.
Award-Winning Seat Design

- Developmental seatback partners
 - Cutting Dynamics, Inc. (CDi)
 - Ticona Engineering Polymers
 - TenCate Advanced Composites
 - A&P Technology (A&P)

- Work began in 2009
Award-Winning Seat Design

- (Top) seat frame
 - Early challenges (A&P and CDi)
 - Identify a thin tape that would run through a braiding machine
 - Develop design tools to predict type of braid required to meet geometry of seatback
 - Modify braiding equipment to manipulate the PPS / carbon tape into a preform
 - Identify preform configuration
 - Develop innovative tooling
Typical Tool for Tubular TP Composite

- Matched metal tool for rapid, quality parts
- Split mandrel for ease of removal
- Silicone sleeve for additional expansion of tool from ID
- Heating/cooling channels to reduce process time
Award-Winning Seat Design

- (Top) seat frame
 - Proprietary CDi forming process
 - Uses braided PPS/carbon tape
 - High speed (capable of production volumes of 400,000 annually)
 - Excellent repeatability and reproducibility (R&R)
 - Produces complex geometry, hollow-section parts
Award-Winning Seat Design Version One

- Seatback
 - Sourced from recycled content PPS and chopped carbon fiber, which in turn is recyclable
Award-Winning Seat Design Version 2

- Hollow braided frame (formed from PPS / carbon braided tapes) behind seatback
- Seatback molded from recycled PPS and carbon fiber
- High-speed production process developed to produce seat frame
- Seatback drilled for rivets and joined to frame
Award-Winning Seat Design

- System won the JEC Thermoplastic Composites award in April 2011
- Currently in production for aerospace seat suppliers by Cutting Dynamics using a commercial viable process.
Award-Winning Seat Design

Benefits of modular seatback system

- vs. Aluminum
 - 30% lighter
 - Meets functional mechanical performance
 - Cost competitive

- vs. Thermosets
 - Lighter parts
 - Non-toxic manufacturing process
 - Fully recyclable (in-plant and post-consumer)
 - Much faster manufacturing process with less post-mold finishing
 - Eliminates fasteners and adhesives with welding process
Award-Winning Seat Design

- Benefits of modular seatback system
 - Meets aerospace industry’s strict flame/smoke/toxicity requirements without halogenated flame retardants
 - Lower cost vs thermoset due to high throughput process
 - Significant weight reduction per aircraft

Addresses Needs of Both Aerospace and Automotive Industries
Summary

- Both aerospace and automotive need seat options that
 - Offer comparable or better mechanical performance while lowering weight and costs
 - Comply with cabin safety requirements
 - Meet production volumes
 - Reduce VOCs, carbon emissions, energy use
 - Improve passenger comfort
- New thermoplastic PPS/carbon modular seatback system answers these needs and more
NOTICE TO USERS:

Information is current as of September 13, 2011 and is subject to change without notice.

The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products.

Any determination of the suitability of a particular material and part design for any use contemplated by the user is the sole responsibility of the user. We strongly recommend that users seek and adhere to the manufacturer’s current instructions for handling each material they use.

Any existing intellectual property rights must be observed.

© 2011 Ticona. Except as otherwise noted, trademarks are owned by Ticona or its affiliates. Fortron is a registered trademark of Fortron Industries, LLC.
Thank You

For more information, please contact: **Bob Newill**
Ticona Engineering Polymers
Tel (248) 377-6870
Cell (248) 766-5048
robert.newill@ticona.com