Overview of Maleic-Anhydride-Grafted Polyolefin Coupling Agents

A guide to understanding their uses, benefits, functions, selection, and developments

Louis W. Martin, Addcomp North America Inc.
The primary functions of coupling agents

- Connect olefinic polymers to dissimilar materials
- Connect (not compatibilize) olefinic polymers with dissimilar polymers
Fundamentals of polyolefin coupling agents

Connect polymers to dissimilar materials

- Inorganic materials:
 - Glass fiber
 - Carbon fiber
 - Metals

- Organic materials
 - Wood
 - Flax
 - Cotton
 - Hemp
Connect different polymers

• Join olefinic resin film with other film
• Not intended to compatibilize incompatible polymers within the same bulk
 − Polyolefins and polyamides
 − HDPE and PP
 − Others
Fundamentals of polyolefin coupling agents

Major uses for coupling agents

- Couple reinforcing fibers to polymer matrix
 - Glass, carbon, hemp, wood, flax, cotton
- Connect polymer with substrate
 - Coatings or linings for metal containers
 - Overmolded polymers on metal structures
- Tie layers between polymer films
- Adhesives
- Emulsions
Benefits of coupling agent use

- Reduction in fiber pullout
 - Increase impact strength
 - Increase tensile strength

- Reduction of water absorption
 - Prevent degradation in natural fibers
 - Prevent corrosion in metals

- Create tie layer between dissimilar materials
 - Provide strength for multilayer polymer films
Major classes of coupling agents

- Parts produced using melt compounding only
 - Polyolefins grafted with maleic anhydride
- Parts requiring reactive extrusion during production
 - Silanes
How coupling agents work

Polar group (B) grafted onto olefin group (A)

- A is polypropylene
- B is maleic anhydride
How coupling agents work

Two-part molecule

• Polar group
 – Creates chemical bond with substrate
 – Sizing on reinforcing glass fiber
 – Metal
 – Wood or other natural material
 – Polar resin

• Olefin section
 – Forms hair-like structure that becomes part of resin bulk
 – Mechanical entanglement with resin chains
How coupling agents work

Schematic of coupling

MAH MAH MAH MAH

Substrate
Influences on selection of coupling agent

- Balance of polyolefin chain lengths
 - Longer chain length provides strength
 - Greater mechanical entanglement with resin
 - Shorter chain length provides mobility
 - Greater number of polar groups reach substrate
 - Increases melt flow

- Percentage of olefin molecules with grafted polar groups

- Amount of free MAH
Various combinations of molecular weight and percentage of grafted polar group are appropriate for different applications.
Inventory of reaction products

- Ungrafted PO
 - Unbroken chains, shortened chains
- PO-MAH
 - 1:1 grafted molecules
- MAH-PO-MAH
 - 2:1 grafted molecules
- Free MAH
Process influences on performance

- Typical level of free MAH in standard coupling agents
 - 0.2% to 0.25% (2000 to 2500 ppm)
 - This can be 50% of total MAH in coupling agent
- Process improvements currently in production can lower this to 0.005% or 0.6%
Process influences on performance

Higher concentrations of free MAH
 • Outgassing from materials and finished parts
 – Unacceptable odor
 – Fogging of proximate surfaces
 – Potential impact on color
 – Potential reduction of UV resistance
Optimum constituent levels

- 1:1 grafted MAH-PO molecules
 - No ungrafted PO molecules
 - No multi-grafted PO molecules
- Minimal free MAH
 - 20-50 ppm (0.002 - 0.005%) free MAH possible
Influence on tensile strength in fiber-reinforced polymers

• [Need to insert graph from 2009 short-fiber study here]
Process influences on performance

Influence on application suitability

Diagram showing the relationship between average Mw and % grafted MAH, with positive influence on Coatings and Tie Layers, negative influence on Coupling Agents, and no influence on Other Applications.
Next generation PO-MAH coupling agents

• Higher Mw PO @ constant grafted MAH %
 – Stronger mechanical entanglement with polyolefin
 – Higher tensile strength materials

• Lower % free maleic anhydride
 – Lower emissions of volatile organic compounds (VOCs)
 – Less fogging from applications in use
 – Less pollution of possible sites for bonding with substrate
 – Higher tensile strength
Higher Mw polyolefins

% Grafted MAH

Avg. Mw PO

PRIEX® 26090

20098

26098

20093

Development trends
Development trends

Lower % free maleic anhydride
Development trends

Lower VOCs and fogging

<table>
<thead>
<tr>
<th></th>
<th>VOC</th>
<th>FOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>232</td>
<td>299</td>
</tr>
<tr>
<td>Old Technology</td>
<td>242</td>
<td>317</td>
</tr>
<tr>
<td>Source Reduction</td>
<td>200</td>
<td>309</td>
</tr>
<tr>
<td>New Tech 1: Stripping Agent</td>
<td>162</td>
<td>264</td>
</tr>
<tr>
<td>New Tech 2: Adsorbent</td>
<td>150</td>
<td>275</td>
</tr>
</tbody>
</table>
Development trends

Higher tensile strength

<table>
<thead>
<tr>
<th>Method</th>
<th>Tensile Strength Flow</th>
<th>Izod Notched @ -40C flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>73.6</td>
<td>22</td>
</tr>
<tr>
<td>Old Technology</td>
<td>75.1</td>
<td>22</td>
</tr>
<tr>
<td>Source Reduction</td>
<td>75.1</td>
<td>23</td>
</tr>
<tr>
<td>New Tech 1: Stripping Agent</td>
<td>70.9</td>
<td>22</td>
</tr>
<tr>
<td>New Tech 2: Adsorbent</td>
<td>73.2</td>
<td>18</td>
</tr>
</tbody>
</table>
Discussion and Questions