Why Advanced Composites?

- Light Weight
- Superior Strength
- Greater Fatigue Resistance
- Vibration Damping
- Chemically Inert
- No Body / Frame Rot
- Mechanical Stability
- Design Flexibility

<table>
<thead>
<tr>
<th>Density</th>
<th>lb/ft³</th>
<th>kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>501.10</td>
<td>8026.62</td>
</tr>
<tr>
<td>Aluminum</td>
<td>172.80</td>
<td>2767.91</td>
</tr>
<tr>
<td>E-Glass</td>
<td>120.90</td>
<td>1936.58</td>
</tr>
<tr>
<td>Carbon Fiber</td>
<td>103.60</td>
<td>1659.46</td>
</tr>
<tr>
<td>Kevlar™</td>
<td>84.60</td>
<td>1355.12</td>
</tr>
</tbody>
</table>
Composites Crossover to Land Transportation

- 1953 to Present
 - General Motors - Corvette
 - 100% Composite Body
- Over 150 different automotive applications in regular production
 - Prime Contribution
 - Weight Savings resulting in fuel savings
 - Freedom from Rust and Corrosion
 - Parts Consolidation
 - Elimination of separately formed pieces
 - Lower Tooling Cost
 - Design Flexibility
 - Complex geometry difficult in metal
 - High Strength and Good Durability
Composites Crossover to Land Transportation

One (1) piece all composite body-in-white electric vehicle
Carbon-E-glass sandwich construction
(FMVSS 30 mph frontal impact certified)
Composites Crossover to Mass Transit

Advanced Technology Transit Bus
40’ All-Composite Body

Tooling System
Composites Crossover to Mass Transit

40’ and 45’ All-Composite Body Assembly
27-33% body weight reduction
Altoona Tested - Certified (12yr, 500,000 mile, heavy duty cycle)
Composite Bus Body
Why Composite Bus Body?
(from owners perspective)

- Lighter than Steel Body Shell
- Lower Fuel Consumption
- Lower Emissions including CO$_2$
- Superior Corrosion Resistance
- ‘Easier’ Repairability
- Composite Technology becoming mature in Automotive, Aerospace and Windpower Industries

<table>
<thead>
<tr>
<th>Density</th>
<th>lb/ft3</th>
<th>kg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>501.10</td>
<td>8026.62</td>
</tr>
<tr>
<td>Aluminum</td>
<td>172.80</td>
<td>2767.91</td>
</tr>
<tr>
<td>E-Glass</td>
<td>120.90</td>
<td>1936.58</td>
</tr>
<tr>
<td>Carbon Fiber</td>
<td>103.60</td>
<td>1659.46</td>
</tr>
<tr>
<td>Kevlar™</td>
<td>84.60</td>
<td>1355.12</td>
</tr>
</tbody>
</table>
Composite Bus Body Design Criteria

Different design criteria to develop all-composite bus body laminate with Finite Element Analysis (FEA), e.g.:

- Linear braking loading
- Linear acceleration
- Linear modal analysis
- Linear roof crush simulation
- Floor loading
-
Starting Point

Bus Body Solid Model (over Bus Suspension & Steering System)
- Application of laminates (ply-by-ply)

Finite Element Analysis:
- Predicts performance of materials and global structure
- Determination of first ply failure and mode of failure
- Result: Ply-by-ply / page-by-page laminate sequence for complete QA-fidelity

Visualisation of FEA Analysis Results
Bus Body Tooling

Use of 3D CAD Model to develop master plugs (body, small parts)

Complete body ➤ developed from separate upper & lower halves
Bus Body Tooling

Fiberglass polymer filled material for mold

Molds may be split into front, rear, sides, Chassis (5 parts) for easy part removal

Lay-up preparation (inspection, release agent, mould parts assembly, vacuum check)
Robust Manufacturing Process

- **Hand Lay Parts**
 - Front and Rear Fascias, Dashboards

- **SCM Molding**
 - Outer Body Panels

- **Filament Winding**
 - Tanker Trucks, CNG Fuel Tanks

- **VIP**
 - Body Shell, Chassis, Structural Components
Mold Lay-Up

Paint primer, skin-coat

FST layer

NCF fabrics

Core
VIP-Process

De-Molding
Component Integration & Final Shell Assembly
Testing

Depending on local regulations

Test of support structure

Test track for complete unit (Altoona, USA)
Body Weight Savings

9.1m Composite Bus ~ 2.25 ton savings

12.2m Composite Bus ~ 3 ton savings

13.7m Composite Bus ~ 3.7 ton savings
Summary

Esthetically pleasing
No geometry constraints as imposed by metal forming techniques

Scratch & dent resistant
Higher ultimate tensile elongation than metals
Traditional repair techniques (marine, automotive)

Rust & rot resistant
Non-corrosive, no metal
Impervious to chemicals
Summary

Lighter weight than metal
Self-supporting bus body without chassis

Designed to meet all transport rigors
Some models currently travelling over 1,100,000 miles

Can be packaged with all many types of drive systems
Diesel, bio-diesel, CNG, LNG, hybrid electric drive, fuel cell...
Thank you very much for your attention!