What's the Difference: Thermoset vs. Thermoplastic Carbon Fiber Composites?

September 2013

Presented by Allan James

With thanks to Pete Cate, Dave Bank, Rainer Koeniger, Mike Malanga, Jay Tudor, Jin Wang
Dow Automotive Systems

- A leading global provider of advanced material solutions, making vehicles lighter, safer, stronger, quieter and more comfortable

The Dow Chemical Company
- More than 5,000 products manufactured at 188 sites in 36 countries
- Selling to customers in 160 countries
- 6500 R&D staff globally
Thermoplastics & Thermosets

- Thermoplastics and thermosets are structurally different

Amorphous Thermoplastics
Molecular chains held together by weak van der Waals forces or by hydrogen bonds which reduce strength and stiffness with temperature, and cause the material to creep under load

Polyamide
Crystalline molecular groups connected by amorphous chains (which undergo changes at Tg), along with van der Waals forces or hydrogen bonds

Epoxy
Cross-linked molecular structure held together with strong covalent bonds, creating rigid, thermally-stable, creep-resistant materials which maintain strength and stiffness very well

Semi-crystalline Thermoplastics
Crystal lamella

Thermosets
Cross link

- **ABS**
- **Polyamide**
- **Epoxy**
Fibre Polymer Interface Detail

- The interaction between the polymer and the fibre determines the stability of the composite construction

Semi-Crystalline Polymers
- Fiber sizing reacts with **amorphous** region of the polymer to create the interface
- Amorphous regions are highly affected by changes in temperature, reducing interfacial strength and lateral stiffness between fibres

Thermosetting Polymers
- Fiber sizing reacts directly with the **epoxy network**, creating strong covalent bonds at the interface
- The cross linked network is rigid, and relatively unaffected by changes in temperature resulting in a more consistent structural performance
The Importance of Low Matrix Material Viscosity

- Excellent wet-out of the carbon fibre tows within the fibre weave is key to a strong, durable composite

Matrix Material Processing Viscosity Comparison

- RTM Epoxy: ~10 mPa.sec
- Polyamide 6 melt: 100,000-200,000 mPa.sec
Matrix Material Function in the Composite

- Structural composites must undergo a variety of short- and long-term load cases, generating interfacial forces which are managed by the polymer matrix material.

Compressive Forces
Matrix material must laterally support fibres and help to prevent fibre buckling.

Shear Forces
Matrix material must limit inter-laminar shear to preserve composite stiffness.

Tensile Forces
Matrix material must laterally connect fibres to prevent composite delamination.
Structural Composite Applications

- Different vehicle applications require different material properties

Stiffness/Strength Relevance of Automotive Components

Materials must maintain stiffness and strength over thermal / moisture / aging cycle

Original Source: “Stiffness Relevance and Strength Relevance in Crash of Car Body Components,” European Aluminum Association, May 2010
Thermal Stability of Different Polymer Types

- Thermal performance requirements of the application will influence response to load cases, and thus drive polymer choice.

![Graph showing thermal stability of different polymer types.](image)

- **Tg Epoxy** can be tuned via formulation.

Modulus (GPa) vs Temperature (°C)

Data source example: “Moisture absorption in polyamide-6...” by Vlasfeld, Groenewold, Bersee & Picken

Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Thermal Stability of Different Polymer Types

- Thermal performance requirements of the application will influence response to load cases, and thus drive polymer choice.

![Graph showing thermal stability of different polymer types.](image)

- Epoxy dry
- Semi-crystalline thermoplastic PA6 dry

PA6 Data source example: “Moisture absorption in polyamide-6...” by Vlasfeld, Groenewold, Bersee & Picken
Demo Part Simulation – Temperature Effect

• Comparison of short Carbon Fibre Epoxy and Polyamide 6 composites in a roof bow, showing overdesign required to achieve same stiffness at 80°C

Exterior Roof Panel

Roof Bows

Static loads

6 d.o.f. constrained

Thickness Increase Required to accommodate Modulus Loss at 80°C

Front Roof Bow

<table>
<thead>
<tr>
<th>Thickness Increase</th>
<th>CF Epoxy</th>
<th>CF PA6 Nylon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Moisture Stability of Composites

• Typical structural automotive application conditions also involve moisture exposure to varying degrees

![Graph showing water absorption vs. water soak time](image)

Significant moisture absorption is an indication of property change in the matrix polymer and ultimately in the final composite, across the required temperature range.

PA6 Data sources: Vlasfeld, Bersee & Picken; BASF; Dupont

Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Polymer Property Change after Moisture Exposure

- To predict composite performance, it is critical to understand the increase or decrease of all relevant matrix polymer properties as a result of exposure to application conditions.

Changes in stiffness and strength are typically addressed by proportional overdesign of the composite.
Demo Part Simulation – Moisture Conditioning Effect

- Short Carbon Fibre Epoxy and Polyamide 6 roof bow application, with overdesign to achieve same stiffness at 25°C after humidity exposure*

![Diagram of Exterior Roof Panel and Static loads]

Thickness Increase Required at Room Temperature to accommodate Modulus Loss after 22hrs 90°C Moisture Exposure

- Front Roof Bow
- Middle Roof Bow
- Rear Roof Bow

* 22hrs water immersion at 90°C, then tested at 25°C

©™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow
Moisture & Temperature Combination

• Typical automotive application conditions involve combined exposure to both temperature and moisture
Moisture & Temperature Combination

- Typical automotive application conditions involve combined exposure to both temperature and moisture

![Graph showing Modulus (GPa) vs. Temperature (°C)]

- Epoxy dry
- Epoxy wet
- Semi-crystalline thermoplastic PA6 dry
- Semi-crystalline thermoplastic PA6 wet

PA6 Data source example: “Moisture absorption in polyamide-6...” by Vlasfeld, Groenewold, Bersee & Picken
Moisture & Temperature Combination

- Typical automotive application conditions involve combined exposure to both temperature and moisture.

Note: as carbon fibre reinforcement is added, the stiffness loss is reduced, down to <25% in high wt% continuous carbon fibre PA6 composites...

...and <5% in high wt% continuous carbon fibre Epoxy composites.
Component Cost & Mass Comparison

- Cost and Mass analysis including overdesign to accommodate composite stiffness decline at 80°C after 22hrs moisture exposure.

Cost Model Output for a Benchmark Carbon Fibre Composite Component

<table>
<thead>
<tr>
<th>Carbon Fibre Content and Format</th>
<th>Composite Material Cost*</th>
<th>Composite Material Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 wt%</td>
<td>CF Epoxy Composite Material</td>
<td>CF PA6 Composite Material</td>
</tr>
<tr>
<td>40wt% Chopped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60wt% Woven</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost increases more for PA6 than Epoxy as overdesign adds more carbon fibre.

Original part mass before overdesign.

* Materials only. Processing cost analysis shows further disadvantage for PA6 due to high processing temperatures versus ultra-fast epoxy systems.

Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow.
So Why Thermoplastics?

• Traditionally Thermoplastics have been perceived to offer advantages of:
 - Lower cost polymers
 - Faster processing
 - Recyclability

• Advanced Thermoset epoxy chemistry and processing techniques are now:
 - Cost competitive in the final composite (by optimising carbon fibre utilization)
 - Fast enough to compete favourably with mid to high wt% carbon-fibre thermoplastics
 - Efficiently recyclable enabling recovery of high-value usable carbon fiber
Conclusion: ThermoSets The Benchmark

- After optimising cycle time to match volume targets, the key to competitive structural composites is to reduce the utilization of carbon fibre, as it is the most costly component.

PRICE

MINIMISE CARBON FIBRE UTILIZATION!

PROCESSING

Ensure low (~10mPa.sec) viscosity for excellent fiber wet out and maximum interfacial strength; accelerate demold times to <2mins and avoid high temperature processing.

PERFORMANCE

Ensure consistent mechanical performance (stiffness and strength) over temperature and humidity range, and sufficient chemical resistance for the application.
THANK YOU FOR YOUR ATTENTION!

Allan James
NAFTA Marketing Manager Composites
Email: allanjames@dow.com
www.dowautomotive.com