Development of Particle-Core Compression Molding

Koichi Akiyama
Toyohashi Research Laboratories
Composite Material Development Center

MITSUBISHI RAYON CO., LTD.
PCM Technology

- High cycle process based on compression molding
- Rapid curing prepreg
 - 2 minutes cure at 150 °C (302°F)
- Developed for high volume Carbon Fiber Reinforced Plastic (CFRP) applications

PCM (Prepreg Compression Molding)

Near net shape preform made of rapid curing prepreg is cured in heated steel tool. Short mold cycle time.
Hollow section effectively stiffens structure of part without increasing weight.

Table:

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>Hallow</th>
<th>Core included</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI [N mm²]</td>
<td>4.17E+10</td>
<td>4.19E+10</td>
<td>4.19E+10</td>
</tr>
<tr>
<td>Weight [g]</td>
<td>400</td>
<td>166.4</td>
<td>179.4</td>
</tr>
<tr>
<td>Weight ratio [-]</td>
<td>1.00</td>
<td>0.42</td>
<td>0.45</td>
</tr>
</tbody>
</table>

CFRP:

- **Modules [GPa]:** 80
- **Density [g/cm³]:** 1.6
- **Core:**
 - **Modules [GPa]:** 0.07
 - **Density [g/cm³]:** 0.05
Molding Processes of Hollow Section

- Joining two open sections
 - Additional bonding time
 - Joint design is necessary, such as flange

- Bladder molding
 - High molding pressure cannot be used
 - Part design limitation

- Molding with core material
 - Conventional soluble core
 - No internal pressure from core side

Particle Core Compression Molding
- High cycle compression molding
- Internal pressure can be applied
- Design flexibility
Particle-Core Compression Molding

- **Removable core**
 - Plastic inner shell filled up with particle
 - Particle is reusable

- **Prepreg compression molding**
 - Net shape preform made of prepreg and removable core
 - After compression molding, particle is removed from molded parts, forming hollow section.
Advantages of Particle Core Molding

<table>
<thead>
<tr>
<th>Advantage of Particle Core Molding vs.</th>
<th>Bonding</th>
<th>Bladder Molding</th>
<th>Soluble Core</th>
<th>Conventional Core</th>
</tr>
</thead>
</table>
| **Bonding** | ✓ Lower cost (Bonding cost is expensive)
 | ✓ Shorter process time (Bonding is extra process)
 | ✓ Higher reliability (Lower strength at bonded area) | | |
| **Bladder Molding** | | ✓ Better appearance and properties (Bladder molding pressure is low)
 | | ✓ More freedom for parts design (Restriction due to insertion of bladder tube) | | |
| **Soluble Core** | | | ✓ Better appearance and properties (Internal pressure cannot be used)
 | | | ✓ Dimensional stability (Internal pressure cannot be used) | | |
| **Conventional Core** | | | | ✓ Lighter weight (Core is heavier)
 | | | | ✓ Lower cost (Core material is expensive)
 | | | | ✓ More design flexibility (Restriction for parts design) |
Compression Molding Process

- Particles can move inside plastic inner shell by compression force
 - Particles push prepreg from inside and fits it to tool cavity
 - Uniform pressure can be applied on prepreg, even on vertical wall

Particle moves and pressurizes inside of cavity evenly, even at vertical wall
Internal Pressure with Plunger

- Applying internal pressure with plunger
 - Pressurize more evenly from inside of core
 - Eliminate fiber distortion in the vertical wall
 - Eliminate resin accumulation at the sharp corners

Resin rich area in corners
Fiber distortion at vertical wall

Compress
Pressurize from inside of core by plunger
Heat Transfer Rate

- **Internal pressure application with plunger prevents resin accumulation**

Without Internal Pressure
- Compress
- Resin Accumulation

With Internal Pressure
- Compress

Press pressure: 8MPa
Plunger pressure: 4MPa
Plastic Inner Shell

- Plastic inner shell can be made by blow molding thermoplastic
 - Common thermoplastic such as polyamide or polypropylene can be used
 - Appropriate mechanical property at 140 - 150 °C

Plastic Inner Shell

Filling up the shell with particle

Filled up with particle
Thermal Conductivity

- Particles must not absorb much heat
 - Low thermal conductivity
 - Low heat absorption to maintain high prepreg temperature for rapid curing

<table>
<thead>
<tr>
<th></th>
<th>Thermal Conductivity (W/m·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Nitride (AN216A)</td>
<td>150</td>
</tr>
<tr>
<td>Silicone Carbide (SC211)</td>
<td>60</td>
</tr>
<tr>
<td>Alumina (A479M)</td>
<td>32</td>
</tr>
<tr>
<td>Silicone Nitride (SN220)</td>
<td>20</td>
</tr>
<tr>
<td>Zirconia (Z201N)</td>
<td>3</td>
</tr>
<tr>
<td>Cemented Carbide WC-Co</td>
<td>85</td>
</tr>
<tr>
<td>Steel (Carbon Steel)</td>
<td>41</td>
</tr>
</tbody>
</table>

Fine Ceramics

Metal

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
Friction on Particle Surface

- Particles must move smoothly in shell
 - Low friction coefficient
 - Prevent pressure loss
 - Combination of different particle sizes

\[F_p = F_0 - f \times n \]

- \(f \): friction
- \(n \): number of particle

Pressure loss is larger as position from plunger is farther.
Size of Particle

- Size of particle is important
 - Smaller particles compress prepreg more evenly, however does not flow smoothly
 - Larger particles move and transfer pressure easily, which minimizes pressure loss by friction
 - Combination of different particle sizes balances efficiency of pressure transfer and uniformity

![Diagram showing small and large particles in a press]

Example: 1mmφ
Press Pressure: 8MPa
Plunger Pressure: 4MPa

Example: 10mmφ
Pressure Chart

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
Compression Molding Process

- **Particles must move smoothly and not absorb heat**
 - Low friction coefficient
 - Preparing pressure loss
 - Low heat transfer coefficient
 - Minimal heat absorption to maintain temperature for curing material

- **Selection of particle size is important**
 - Smaller particles apply more uniform pressure
 - Larger particles lose less pressure by friction
 - Combination of different particle sizes balances pressure transfer efficiency and uniformity
Preforming with Core No.1

- **Polyamide Inner Shell**
- **Core; Inner Shell filled with Ceramic Particle**
- **Sectional Preform; Core Wrapped with Prepreg**
- **Near Net Shape Preform; All Sectional Preforms Assembled**
Preforming with Core No.2

Near Net Shape Preform; All Sectional Preforms Assembled

Near Net Shape Preform; Outside Wrapped with Fabric Prepreg

Near Net Shape Preform

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.

MITSUBISHI RAYON CO., LTD.
Tool for Wheel Demonstration

<Upper Mold>

<Near Net Shape Preform; Outside Wrapped with Fabric Prepreg>

<Lower Mold>

Plunger

Upper Mold

Ring

Lower Mold
Molding of Wheel Demonstrator

- Charge a net shape preform made with particle core into the tool
 - Tool Temperature; 140℃
 - Molding pressure; 4MPa

- Close the tool
 - Upper tool pushes ring on lower tool
 - Vertical wall of a preform is compressed by ring and plunger on upper tool

- Plunger compress preform after upper tool close completely
 - Plunger compress particle core and generate internal pressure

- Parts is de-molded after curing completes
 - Eject all the particles from core
Molding Process Demonstration of Wheel

Molding Parameters
- Tool Temp: 140 °C
- Cure time: 600 sec.
- Molding Pressure: 8 MPa
- Plunger Pressure: 3.3 MPa
- Plunger Insert: 1.5 mm

Steps:
1. **Charging Near Net Shape Preform**
2. **Curing Complete**
3. **Finished Part**
4. **De-molding**
5. **De-flushing**
 - Removing particles

Good Chemistry for Tomorrow
Creating better relationships among people, society, and our planet.
Miniature Floor Demonstration

- Demonstration floor part with hollow section was developed
 - Corrugate structure
 - Hollow section by particle core molding
 - Hybrid molding of prepreg and CF-SMC

Structural floor model
Size: 500X500mm
To a world standard.

Mitsubishi Rayon is one of the world's leading suppliers of carbon fibre. Our driving force is our integrated production system - raw material to finished product - which enables us to respond quickly to changing market needs. Our new range of P330 carbon fibres is an example of this response in action with a fibre that offers high strength and resilience plus volume production. The standards set by Mitsubishi are endorsed by customers throughout the world.