High Speed RTM Materials and Processing Technology Advancements for Affordable Lightweight Composites

Allan James, Rainer Koeniger, Ali Siddiqui, Dave Bank, Hein Koelman, Peter Cate

SPE ACCE Composites Conference

September 2014
Dow Vision: “Affordable Lightweighting”

- **Durable, Stable Matrix Material**
- **Characterisation & Simulation for Optimised Parts**
- **Engineering & Design**
- **Material Efficiency**
 - Required Thickness Increase
 - Front Roof Bow
 - 80°C
 - CF PA6
 - CF Epoxy
- **Processing Efficiency**
 - 00:59s
- **Assembly Efficiency**
 - Fast Cure Resins
- **Large Part Consolidation & Adhesive optimisation**
- **Secondary Value**
 - kg
 - $€
- **Mass Decompounding**
- **Legislative Penalties**
- **Secondary Value**
- **Source: SEMA**
 - Legislative Penalties
- **Source: Multimatic**
 - Engineering & Design
 - Material Efficiency
 - Processing Efficiency
 - Assembly Efficiency
 - Secondary Value
 - Mass Decompounding
 - Large Part Consolidation & Adhesive optimisation
 - Source: SEMA
 - Source: Multimatic
Dow Automotive Lightweighting Portfolio

Dow VORAFORCE™
Thermoset Matrices

Optimised substrate-adhesive interface
Minimised composite overdesign
Minimised surface preparation
Corrosion control

Maximise resin-fiber interface performance

DowAksa AKSACA™
Carbon fiber

Optimised carbon fiber content via local foam reinforcement

Dow BETAMATE™
and BETAFORCE™
Structural Adhesives

Cavity sealing and Acoustic optimisation

Dow BETAFOAM™
Structural Foam
High-Pressure Resin Transfer Molding (HP-RTM)

- Highly coupled multi-physics process
- Fabric preforming affects the flow
- Permeability characterization is essential
- Cure kinetics modeling for ultrafast cure resin systems

Resin Requirements:
- Low viscosity and long gel time to fill mold and impregnate fiber mat
- Fast cure to reduce cycle time
- Complete/quick resin conversion

Process requirements (for large volume automotive):
- Infusion time 10-40 sec
- Demold time down to 40 sec
- Total cycle time 80-100 sec
Ultra fast cure Epoxy System 81 sec Cycle Time

- 50vol% carbon fiber composite, 540 x 290 x 2mm

On screen Timer

<table>
<thead>
<tr>
<th>Time</th>
<th>Step description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>Process start (press closes)</td>
</tr>
<tr>
<td>0:13</td>
<td>Press is closed (mold is evacuated)</td>
</tr>
<tr>
<td>0:20</td>
<td>Injection starts (approx. 10 secs)</td>
</tr>
<tr>
<td>0:30</td>
<td>Injection complete, cure begins</td>
</tr>
<tr>
<td>1:10</td>
<td>Mold opens (40 secs after end of injection – this is “demold time”)</td>
</tr>
<tr>
<td>1:21</td>
<td>Press cycle time (press is open and in safe position, part ejects)</td>
</tr>
</tbody>
</table>
Development Materials

- Carbon fiber
 - DowAksa A 42 – 24k
 - 50% fiber volume fraction
 - 2x2 weave

- Epoxy Resin
 - VORAFORCE™ 5300 – Ultra fast cure epoxy system
Cure Window Development

Conversion as a function of mold temperature and cure time for ultra fast cure

<table>
<thead>
<tr>
<th>Mold temperature</th>
<th>Cure time</th>
<th>DSC, Conversion (from 1st heat)</th>
<th>DSC, mid point Tg (from 2nd heat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110° C</td>
<td>120 seconds</td>
<td>94.4 %</td>
<td>125 °C</td>
</tr>
<tr>
<td>120° C</td>
<td>60 seconds</td>
<td>93.9 %</td>
<td>123 °C</td>
</tr>
<tr>
<td>120° C</td>
<td>120 seconds</td>
<td>98.9 %</td>
<td>122 °C</td>
</tr>
<tr>
<td>130° C</td>
<td>60 seconds</td>
<td>98.9 %</td>
<td>122 °C</td>
</tr>
<tr>
<td>130° C</td>
<td>120 seconds</td>
<td>Approx. 100 %</td>
<td>123 °C</td>
</tr>
<tr>
<td>140° C</td>
<td>30 seconds</td>
<td>99.5 %</td>
<td>120 °C</td>
</tr>
<tr>
<td>140° C</td>
<td>60 seconds</td>
<td>Approx. 100 %</td>
<td>120 °C</td>
</tr>
</tbody>
</table>

All values generated from composite HP-RTM panels (50% fiber volume fraction, DowAksa fiber)

- At or above 130 °C, cure times of approximately 60 seconds are achieved with acceptable conversion (>98%)
- Demolding is possible within 120 seconds at 110 °C; however, a post-cure is recommended to achieve full conversion
- At 120 °C a cure time of >90 seconds is recommended to achieve acceptable conversion
Viscosity Curves

Cure time can be adjusted over a wide temperature spectrum:

- High production volumes require processing temperatures >105 °C
Flow Improvements

Flow Comparison (50% carbon fiber vol., 2 mm thick)

[VSS] 65 cm Filled
29 Seconds (viscosity limit reached)

Competitive Product (demold time 4-5 minutes)

[SSS] 122 cm Filled
46 Seconds (viscosity limit reached)

VORAFORCE 5300 (demold time down to 40 seconds)
Internal mold release (IMR) agents were screened for efficacy on RTM equipment:

- External mold release applied for first 3 releases simulating start-up of production.
- Mold release tested at 1 pph resin and at 2 pph resin with similar results (on panel geometry).
- Recommendation 2 pph resin for complex geometries.
- Currently >60 releases demonstrated with no increase in demold force.
Internal Mold Release Agent

Robustness of thermal properties with variation in IMR:

<table>
<thead>
<tr>
<th>IMR pph resin</th>
<th>Panel type</th>
<th>DSC, % Conversion (from 1st heat)</th>
<th>DSC, mid point Tg (from 2nd heat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Clear cast</td>
<td>100</td>
<td>126, 124, 126</td>
</tr>
<tr>
<td>1.8</td>
<td>Clear cast</td>
<td>100, 100, 100</td>
<td>125, 126, 126</td>
</tr>
<tr>
<td>2.0</td>
<td>Clear cast</td>
<td>100, 100</td>
<td>123, 123, 123</td>
</tr>
<tr>
<td>2.2</td>
<td>Clear cast</td>
<td>100, 100</td>
<td>123, 124, 124</td>
</tr>
</tbody>
</table>

Multiple values indicate repeat measurements
All values generated from HP-RTM resin panels (mold temp. = 120 °C, Demold time = 120 sec.)
Integrated Predictive Engineering Capability Build

- Fibre
- Textile
- Preforming

- Resin

- Drapability Simulation
- RTM Simulation
- Structural Analysis

- Epoxy Rheo-Kinetics Model
- Process Optimization:
 - Tool conditions
 - Tool temperature
 - Geometry
 - Injection location
 - Fabric temperature
 - Vent location
 - Resin temperature
 - Flow rate
 - Pressure limits

Predict to Avoid Dry-Spots & High Pressure Gradients
Preform - Draping of Carbon Fibre Fabrics

Excellent visual agreement between experimental results and Abaqus.

Ref: Sherwood
Preform - Draping analysis – Complex tool

- Prediction of orientation
- Rotation of the fibers
- Shell thickness variation during draping

Thickness distribution of the Preform

Fiber Orientation & Rotation
Preform - Permeability Measurements on Stack-Ups

Significant impact of Fiber Volume on Permeability

Ref: M. Arnold e.a. IVW Kaiserslautern
The Integrated Model Suite

- Raw material database
- Formulation explorer
 - Virtual product development and testing
- Product Property Models
 - Thermal (T_g, CTE)
 - Mechanical (K_{1c}, Modulus)
 - Electrical properties (D_k)
- Product Processing Models
 - Rheokinetic behaviour
 - Exotherm
 - Optimize cure cycle
Complex HP-RTM tool

Instrumented Tool:
- Pressure Sensors
- Temperature Sensors

Different Gate Locations Possible
PAM-RTM Model

- 2.5D & 3D Models
 - 2.5D for isothermal analysis
 » Mapped Permeability & Fiber Volume
 - 3D for non-isothermal analysis
 » Permeability/Fiber Volume Zones

Ultra-fast cure epoxy
- Viscosity vs. time

Non-Isothermal:
- Effect of Resin at different temp. versus tool
- Exotherm effect
- eCURE™ Model for viscosity & cure

Isothermal:
- Viscosity & Cure as function of time
Filling profile – short shots

DowAksa Carbon fiber

- 24K tows
- 50% volume fraction
- 6 layers +/-45
- 15% short shot

- Slight lag in filling the dome area
Filling profile – short shots

Carbon fiber Package

• 24K tows
• 50% volume fraction
• 6 layers +/-45
• 25% short shot

• Lag in filling the dome area not replicated in actual part
• Corners- effect seen in actual part
Final Part Results

- PAM-RTM analyses show
 - Non-Isothermal effects
 - State of cure
 - Flow Pattern
 - Pressures to fill

- But…
 - Pressure readings in tests have significant variability

State of Cure at end of Fill

Filling Profile

Temperature profile at end of Fill
Conclusion

• Ultra fast cure epoxy system enable fast cycle time composite molding

• Preform simulation is matched by actual results reducing risks in manufacture of preform tools

• Advanced Rheo-Kinetic eCURE™ models coupled with PAM-RTM correlates well to molding process

• Flow modeling tools match short shot tests allowing for improved tool design

• Combination of ultra fast epoxy resin materials and modeling/engineering tools makes epoxy materials viable for large volume automotive applications