LONG FIBER REINFORCED THERMOPLASTICS

ENABLING ECONOMICAL VEHICLE LIGHT WEIGHTING THROUGH NEW GLASS REINFORCEMENT SOLUTIONS

COREY MELVIN, OWENS CORNING,
Global Product Manager, Long Fiber Thermoplastics
TOPICS FOR TODAY’S TALK

WE’LL TOUCH ON...

Market Drivers for Long Fiber Thermoplastics

Long Fiber Thermoplastic Advantages

Owens Corning’s new Performax® SE4849 roving for LFT PP
CO2 Emission Regulations on the 3 Continents

Key Drivers for Weight Out Initiatives in Automotive

Mega Trends
- Lower CO2 emissions
- Urbanization
- Globalization

Transportation Trends
- Need for light, less pollutant vehicles
- 50% of automotive sales from BRIC
- Increased comfort demands

Automotive Industry Trends
- Improve fuel efficiencies
- New OEM & market concentration
- Increased vehicle functionality

Impact for Materials and Chemicals
- Advanced composites solutions
- Advanced polymers
- High strength metals
- New battery materials & chemicals

Source: Owens Corning Marketing Intelligence
REACHING EMISSIONS & FUEL EFFICIENCY TARGETS

- Efficient Diesel Engines
- Smart Gasoline Engines
- Alternative Power Train Designs
- Light Weighting With The Use Of Composite
 -100 Kg
- Use Of Bio Fuels And Bio Diesel
 -0.35 l/100km
- Alternative Transmission Systems
 -9.0 g/km
THE MARKET DRIVER FOR LONG FIBER THERMOPLASTICS
LEADING EUROPE CO₂ EMISSIONS REGULATIONS

The 2012 EEA report indicates OEM’s will achieve the 2015 CO₂ emission targets.

CHALLENGE
Reach the 2020 target of 95g CO₂ /km

by 2015: 130 g CO₂/km
by 2020: 95 g CO₂/km
by 2025: 75 g CO₂/km

Average CO₂ emissions from new passenger cars

Source: European Environment Agency database 2012 - Tailpipe Emissions, g CO₂/km
THE MARKET DRIVER FOR LONG FIBER THERMOPLASTICS
LIGHT WEIGHTING

- **C02 emissions are linked to vehicle mass**
- **Light weighting is essential to C02 emission reductions**

Source: European Environment Agency database 2012
Short term
- Aluminum will displace steel for one on one replacement,
- With pure focus on weight out.

Medium-long term
- Composites allow for enhanced function integration,
- But requires re-engineering of the car modules.

Approximately 200kg of weight reduction per vehicle will be required to address OEMs CO₂ gap
GLASS REINFORCED COMPOSITE OPPORTUNITIES IN AUTOMOTIVE

Vehicle production expected to exceed 100MM units* by 2020

Potential of weight out due to composites is estimated at ~100 kg by 2020 (20-25 kg of reinforcements per car)

Source: Owens Corning estimate, 2013. *: IIHS Global Insights and CSM Auto Forecast December 2011

The graph excludes the amount of non-structural composites used in vehicles today.
LONG FIBER REINFORCED THERMOPLASTICS

ADVANTAGES OF LONG FIBER THERMOPLASTICS
WHY LONG FIBER THERMOPLASTICS?

Advantages versus Short Fiber
- Significant lower warpage vs short glass fibers
- Much lower CTEs and higher isotropy than short glass fibers
- Improved impact performance (especially Low temp.)
- Improved creep resistance (better than PA short glass fiber)
- Improved long and short term heat resistance

Advantages versus Metal
- Lower weight
- Parts consolidation leading to lower cost

Source: Owens Corning
THE LONG FIBER ADVANTAGE

Stress is transferred to the fibers

The structural members of the composite

Long glass fibers create a “skeletal structure” within the molded article

Resists distortion and provides unmatched strength, toughness and overall performance

Source: Ticona
LONG FIBER VS. SHORT FIBER GLASS REINFORCED LFT

LFT Technology boosts material property profile: Dry-as-molded as well as Creep and Heat Resistance.
GLASS REINFORCED LFT SNAPSHOT

- **Growth Rate:** 11-13% CAGR for the period 2013-2017
- **Glass Reinforcements:** >140Kt/yr
- **LFT Process:** 64% LFTP Compounding, 21% DLFT, 15% CFRT (Tapes)
- **Polymer:** 80% PP, 13% PA, 7% Other
- **Market Segmentation:** 81% Automotive, 7% Furniture, 5% EE, 7% Other

Source: Owens Corning Marketing Intelligence- Total LFT industry glass volume demand.
LONG FIBER REINFORCED THERMOPLASTICS
PERFORMAX® SE4849 ROVING
SE4849 ROVING
REDEFINING LFTP PP & CFRT PP COMPOUND PERFORMANCE

Provides outstanding glass processing and wet out

Enables up to a 30% increase in compounding line speed

Opens new applications through high glass loading

Inner door module application example
SE4849 ROVING

BENEFITS

- Improved resistance to fuzz generation for easier processing
- Reduced strand stiffness for easier splaying
- Increased lubricity for lower strand tension
- Improved splice tensile strength enhancing line efficiencies
- Improved LOI consistency for uniform compounding
- Outstanding compatibility with PP for better wet-out and dispersion
- Optimized adhesion to PP to meet all mechanical performance needs
- Exceptional Color

Owens Corning internal tests
SE4849 ROVING
EXCELLENT RESISTANCE TO FUZZ ENABLING
SUPERIOR GLASS PROCESSING

FUZZ generation **50%-83% better** than competitors

FUZZ is an accumulation of short broken or untangled glass filaments that collect at a strand contact point.

Impregnation Die Nozzle Fuzz Level (mg)

- **SE4121**
- **SE4805**
- **SE4849**
- **Comp 1**
- **Comp 2**
- **Comp 3**

Outstanding Fuzz Resistance (along with Dispersion) enables up to **20%** increase in glass loading.

Owens Corning internal tests - Ibaraki Q4 2013
SE4849 ROVING

EXCELLENT GLASS DISPERSION DELIVERING HIGHER GLASS LOADING and FASTER LINE SPEED POTENTIAL

DISPERSION 21% better than OC standard product

DISPERSION UP TO 40% better than some competitors

DISPERSION refers to the ability of the reinforcements to flow and scatter evenly within the polymer matrix thereby providing uniform fiber-polymer adhesion and load transfer.

Undispersed Glass Count

<table>
<thead>
<tr>
<th>Count of white spots</th>
<th>SE4121</th>
<th>SE4849</th>
<th>Comp1</th>
<th>Comp2</th>
<th>Comp3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Outstanding dispersion (and Fuzz resistance) enables up to **30% increase in LFTP line speed**

Physical count of undispersed glass on twenty 89mm x 89mm x 2mm low shear injection molded plates

75% line speed increase realized on the lab line while up to 30% achieved on Industrial lines

Owens Corning internal tests (Ratio [%] of GC50) - Granville and Ibaraki Q4 2013
SE4849 ROVING
EXCELLENT SPLICE STRENGTH FOR EFFICIENT PROCESSING

46% better than OC standard products
UP TO 38% better than some competitors

Owens Corning internal tests - Ibaraki Q4 2013

*Kilogram-force

Air splicer: JOINTAIR 116 by MESDAN
Test conditions: Air pressure 0.7MPa, L6, T6, Chamber 127M
SE4849 ROVING
TOMORROW’S PROCESSING CHARACTERISTICS COUPLED WITH MECHANICAL PROPERTY PERFORMANCE TO MEET TODAY’S DEMANDS

SE4121 at 100% for reference

TENSILE

FLEX

Competitors Average

Competitors Average

Owens Corning internal tests - Granville and Ibaraki Q4 2013
SE4849 ROVING
TOMORROW’S PROCESSING CHARACTERISTICS COUPLED WITH MECHANICAL PROPERTY PERFORMANCE TO MEET TODAY’S DEMANDS

SE4121 at 100% for reference
SUMMARY

Market Growth for LFT looks bright

Automotive Light Weighting will drive growth

Glass Reinforced LFT is one of the most economical solutions

Owens Corning Performax® SE4849 will help improve the overall economics
Thank you.

For more information or inquiries, please contact

RTP_CS@owenscorning.com