Fabrication of Continuous Glass Fiber/ Nylon6,6 Thermoplastic Composite with Improved Mechanical Properties

SPE ACCE Conference, September 9-11, 2014
Dr. Chul Lee, Application Development Manager, INVISTA Engineering Polymer Solutions
Dr. Chee Sern Lim, Application Development Engineer, INVISTA Engineering Polymer Solutions
Dr. Vikram Gopal, Vice President, Technology, INVISTA Engineering Polymer Solutions
Overview

• INVISTA - Our heritage and commitment to PA66
• Market drivers for composites
• Limitations of current composite technology
• Challenges to overcome
• Improvements in current technology
• Q&A
Heritage and commitment
INVISTA – History

- 75+ years in nylon intermediates technology
- More than 10,000 employees in 20 countries
- The world’s largest integrated producer of nylon 6,6 polymer and intermediates
- Launched engineering polymers business in 2009
- Subsidiary of Koch Industries, Inc.
 - Annual revenues of approximately $115 billion
 - About $65 billion in acquisitions and investments since 2003, including INVISTA and Georgia-Pacific
Market Drivers for Composites
• **Fuel Efficiency improvements driven by new CAFÉ standard:**
 - Desired goal – 60% improvement - 34.5 mpg to 54.5 mpg by 2025
 - Light weighting can potentially contribute up to 10-20% improvement

• **Improved balance of properties such as:**
 - Balance of Stiffness & Toughness for Safety applications

• **Design freedom and improved productivity through system integration**
Limitations of existing technologies

- Short fiber reinforced polyamides:
 - Limited Stiffness – 5% of steel
 - Strength and stiffness drop significantly at 50% RH condition
 - Impact strength is relatively low

- Continuous fiber/PA66 composite
 - Much better than Short glass fiber...however, Strength and modulus balance still needs further improvement.
 - Property drop still significant with moisture conditioning.

Efficient load transfer in continuous fiber composite is still a challenge
Designing for the Ideal Final solution

- A composite system where there is efficient load transfer from continuous fibers to polymer matrix.

- System which enables easy processing using conventional methods (injection molding, Compression molding, etc).

- Design freedom with ability to predict performance based on fundamental material characterization.

- Scalable solution to enable Value creation in the market place.
INVISTA’s approach
Approach to achieve Improved Load Transfer

• TORZEN® Resin
 - PA66 → Conventional PA66 resin
 - Mod. PA66 → PA66 resin modified to possess high flow characteristics

• Fiber
 - GF → Commercial glass fiber roving, compatible with polyamide

• Narrow UD Tape
 - Melt coating...following a similar path per our 2013 presentation, “Nylon 6,6 continuous fiber thermoplastics composite – evaluation of processing techniques for optimal performance”, Chul Lee et al., SPE ACCE 2013
Laminate Making Flow Chart

Narrow UD tapes for multi-directional TFP prepreg fabrication, 3-5 mm

TFP: Tailoed Fiber Placement

TFP: Stitch narrow UD tapes into multi-directional fabric

In-mold heating and cooling press

Upper mold half
Prepreg
Lower mold half

Laminate (0, 0/90 and quasi-isotropic)

Method was referenced from “Nylon 6,6 continuous fiber thermoplastics composite – evaluation of processing techniques for optimal performance”, Chul Lee et al., SPE ACCE 2013
Characterization & Method

- **Resin viscosity**
 - Capillary rheology test
 - Melt flow index (MFI), ASTM1238

- **Testing**
 - Tension, ASTM D3039
 - 0 deg laminate \rightarrow 10” x 0.5” x 0.08”
 - 0/90 and quasi-isotropic laminates \rightarrow 10” x 1” x 0.08”
 - Tab is not required if failure mode is acceptable
 - At least 5 specimens were tested
 - Void content, ASTM D2734
 - Specimen size 0.5” x 0.5” x 0.08”
 - At least 5 specimens were tested

- **Moisture conditioning**
 - 50%RH \rightarrow 3 weeks in 80%RH chamber, 1 week in room condition
 - 100%RH \rightarrow 6 months in water bath
Resin Viscosity

- Pellet moisture controlled at around 0.15%
- Mod. PA66 has lower viscosity
- Lower viscosity \rightarrow Higher MFI
Resin Basic Mechanical Properties

- Mechanical properties remain constant
- Strain at yield did not change
- Polymer matrix properties did not change
Tensile Strength & Modulus – 0 Deg Laminate

- Improvement of 25%-30% in tensile strength → better fiber wetting
- Minor improvement in tensile modulus
- Fiber volume fraction 50%-55%, void <1%
- Lower standard deviation → more repeatable results
- Moisture gain of 50%RH sample about 0.4%
0 Deg Laminate – Failure Curve and Mode

Typical stress-strain curve, valid failure mode “XGM”

- X → explosive
- G → gage section
- M → middle
Tensile Strength & Modulus – 0/90 Deg Laminate

- Major improvement in tensile strength (3X) and modulus (2X)
- Fiber volume fraction 50%-55%, void <1%
- Low Moisture gain @ 50%RH sample – 90% retention of properties
Major improvement in tensile strength and modulus
Fiber volume fraction 50%-55%, void <1%
Higher standard deviation maybe due to fiber tow movement
Moisture gain of 50%RH sample about 0.46%
Designing parts with composites

Goal: Achieve same stiffness with PA66 composite as a metal part

<table>
<thead>
<tr>
<th>Material (condition)</th>
<th>PA66/ 30% GF (DAM)</th>
<th>PA66/ 30% GF (50% RH)</th>
<th>PA66/ 50% GF (DAM)</th>
<th>PA66/ 50% GF (50% RH)</th>
<th>Laminate, UD (DAM)</th>
<th>Laminate, UD (50% RH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength (Mpa)</td>
<td>200</td>
<td>130</td>
<td>250</td>
<td>190</td>
<td>920</td>
<td>820</td>
</tr>
<tr>
<td>Tensile Modulus (Gpa)</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>13</td>
<td>44</td>
<td>42</td>
</tr>
<tr>
<td>TS % Drop (wrt DAM)</td>
<td>-</td>
<td>-35%</td>
<td>-</td>
<td>-24%</td>
<td>-</td>
<td>-11%</td>
</tr>
<tr>
<td>TM % Drop (wrt DAM)</td>
<td>-</td>
<td>-30%</td>
<td>-</td>
<td>-24%</td>
<td>-</td>
<td>-4%</td>
</tr>
</tbody>
</table>
Summary of Tensile Modulus Values: Experimental vs Predicted (DAM)

<table>
<thead>
<tr>
<th>Laminate Construction</th>
<th>Test Orientation</th>
<th>Experimental Result</th>
<th>Laminate Plate Theory</th>
<th>FEA Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 degree 0 degree</td>
<td>43.7</td>
<td>43.69</td>
<td>43.72</td>
<td></td>
</tr>
<tr>
<td>0 degree 90 degree</td>
<td>10.8</td>
<td>10.8</td>
<td>10.82</td>
<td></td>
</tr>
<tr>
<td>0/90 0 degree</td>
<td>23.6*</td>
<td>27.5</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>Quasi-Isotropic</td>
<td>21.2</td>
<td>21.7</td>
<td>21.72</td>
<td></td>
</tr>
</tbody>
</table>

* Lower experimental value possibly due to fiber movement

- Both the laminate theory and CAE simulation results are close to experimental results
- Key assumption of laminate plate theory - “perfect/complete bonding”
 - If good wetting of fibers is achieved, laminate plate theory/FEA simulation holds well
Summary of Modulus Values: Experimental vs Predicted (50% RH)

<table>
<thead>
<tr>
<th>Laminate Construction</th>
<th>Test Orientation</th>
<th>Experimental Result</th>
<th>Laminate Plate Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 degree</td>
<td>0 degree</td>
<td>42.3</td>
<td>42.3</td>
</tr>
<tr>
<td>0 degree</td>
<td>90 degree</td>
<td>9.03</td>
<td>9.0</td>
</tr>
<tr>
<td>0/90</td>
<td>0 degree</td>
<td>26.4</td>
<td>25.9</td>
</tr>
<tr>
<td>Quasi-Isotropic</td>
<td>0 degree</td>
<td>22.6</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Both the laminate theory and CAE simulation results are close to experimental results, even for 50% RH samples.
Summary and Conclusion

• UD tapes made with TORZEN® PA66 resin formulation shows significant improvement in load transfer efficiency resulting in improved properties Vs typical PA66 and PA6 continuous fiber composites.

• Both CLPT and FEA results agree well (within 10%) with experimental results.
Q & A

Thank you for your attention
Disclaimer: The data and material presented were derived from internal INVISTA S.à r.l. studies and are provided for informational purposes only. INVISTA does not provide any representation or warranty with respect to the standards used or applied in deriving such data and material, the statistical significance of such data and material or the reliability, accuracy or fitness of such data and material for any purpose whatsoever. All such data and material are the property of INVISTA and nothing herein shall be construed as authorization or license to use, print or distribute any such data or material. INVISTA disclaims any liability whatsoever with respect to the use of any of the data or material contained herein.

TORZEN®, INVISTA and design are trademarks of INVISTA.