Composite Sheets make Ultra-lite airbag housings possible

Vasant Pednekar
Application Development
LANXESS Corp.
Facts and Figures

- Employees worldwide: approx. 17,300
- 52 production sites worldwide
- Sales in the year 2012: EUR 9.094 bn
- Sales in the year 2013: EUR 8.300 bn

LANXESS is one of Germany’s most important providers of polymers and chemicals
High Performance Materials – High-tech plastics and High-end engineering know-how at its best

Smart solutions energized by LANXESS – innovative, flexible, fast

Tailored high-tech plastics compounds

X Durethan®

X Pocan®

Expertise for all stages of advanced component development
4.3% annual increase is needed to meet the CAFE standards

Courtesy: Drivethenation.com

Courtesy: ICCT
Goal was ascertained to reduce the weight of current plastic housing by 35%
HyPAC: Ultra-Lite Passenger Airbag housing

Cover → Cushion → Housing → Inflator
Development partners had a goal achievement target of 20 months

Synergy ensures success
Material Selection was based on criteria to substitute plastic airbag housing that meets extreme deployment loads.

Superior strength and Ultra-Lite Composite Sheets selected.

Tensile modulus

<table>
<thead>
<tr>
<th></th>
<th>Overmolding Plastic</th>
<th>Composite Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MPa]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tensile Strength

<table>
<thead>
<tr>
<th></th>
<th>Overmolding Plastic</th>
<th>Composite Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MPa]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

all values: conditioned, RT, comparable glass fiber content
TEPEX® composite sheets enable lightweight solutions in the automotive industry

Composite sheet
- Thermoplastic (PA) matrix materials reinforced with woven fabrics
- Glass, carbon or aramid fibers (also hybrid)
- Continuous fibers (fiber length = part length)

Advantages of hybrid composite parts
- Low weight (density e.g., 1.8 kg/dm³)
- High stiffness, strength and energy absorption
- Simple recycling
- No investment for additional tools
Integration of composite sheet into the hybrid composite part through “in-mold forming”

- Heating up above melting point
- Shaping during the closing of injection molding tool
- Subsequent injection molding of rib pattern
- Demolding
Development of HyPAC concept with composite sheet and overmold resin

Composite sheet
TEPEX® dynalite

InMold-Forming

Forming

Overmold

Finished container

Hybrid composite parts as next generation in lightweighting technology
Design steps to optimize the material placement on the airbag housing

Building Design Space: Overmold

Defining loads: Inner Pressure

Topology Optimization Results

Displacement results from Simulation
Results to Actual component assisted precisely by topology optimization

Draft of the rib pattern → design in CAD

Resulting structure
Wall Thickness optimization of the composite sheet shows high reinforcement sections

- Blue: low stress areas
- Red: high stress areas* (higher reinforcement necessary)
Development of a passenger airbag housing based on composite sheet technology

Material Selection

- Injection molding:
 - Durethan®
 - BKV240H2.0XCP
 - Matrix: PA6
 - Reinforcement: 40% GF

- Composite Sheet:
 - TEPEX® Dynalite
 - 102-RG600(1)/47%
 - Matrix: PA6
 - Reinforcement/Fabric: Glass fibers (47% vol.)
 - Sheets: 1
 - 50/50 weave
CAE Simulation of fiber reinforced composite parts

Composite Sheet Forming

- Forming
- Fiber Orientation
- Mechanical Properties

Material model: Composite

Injection Molding of Overmold

- Molding
- Fiber Orientation
- Mechanical Properties

Material model: Overmold

Stress [MPa] Strain [%]
Stress [MPa] Strain [%]

Composite Sheets make Ultra-lite airbag housings possible
V. Pednekar, ACCE, September 2014
HyPAC Part: Dynamic calculations using CAE Simulation

Challenges

- Anisotropy
- Non-linearity
- Strain rate dependency
- Failure / Breakage
- Rotation of fiber directions / Non-orthogonal fiber directions
- Temperature dependency
- …

Composite Sheets make Ultra-lite airbag housings possible
V. Pednekar, ACCE, September 2014

Series-production status (All Plastic housing)

Optimized

> 35% weight reduction achieved
HyPAC Part: Dynamic calculations using CAE Simulation

- at 75% of Maximum Load
- All variants withstand the loads

Series-production status (All Plastic housing)

> 35% weight reduction achieved
Composite Sheets make Ultra-lite airbag housings possible

V. Pednekar, ACCE, September 2014

HyPAC Part: Dynamic calculations using CAE Simulation

- At Maximum Load
- First failures in the preliminary part
- Optimized design successful

Series-production status (All Plastic housing)

CAE Simulation: Pressure Loading

→ further optimization of the overmolding

Preliminary

Optimized

> 35% weight reduction achieved
HyPAC: Hybrid Passenger Airbag Housing Overview

Boundary conditions

Topology optimization and interpretation

CAE Simulation for Dynamic Analysis

Optimization
Joint development of a passenger airbag container based on composite sheet technology

- Partnership with Takata AG, Aschaffenburg – a leading producer of occupant-safety-systems
- Successful development of new passenger airbag housings with composite sheets
- First thermoplastic composite airbag housing to be used for passenger cars
- 35 % weight reduction compared to series part

Series production airbag container

- Weight: 550 g

Prototype container with composite sheets

- Weight: 360 g
Thank You for Your Attention

Vasant Pednekar
Applications Development
LANXESS Corporation
111, RIDC Parkwest Dr,
Pittsburgh, PA - 15275
Tel.: +1 412 8093557
Mobil: +1 412 5085142
Fax: +1 412 8091067
E-Mail: vasant.pednekar@lanxess.com
Internet: http://www.lanxess.com
Safe harbour statement

This presentation contains certain forward-looking statements, including assumptions, opinions and views of the company or cited from third party sources. Various known and unknown risks, uncertainties and other factors could cause the actual results, financial position, development or performance of the company to differ materially from the estimations expressed or implied herein. The company does not guarantee that the assumptions underlying such forward looking statements are free from errors nor do they accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments. No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the company or any of its parent or subsidiary undertakings or any of such person’s officers, directors or employees accepts any liability whatsoever arising directly or indirectly from the use of this document.