Transparent composite films of all-cellulose and cellulose-polyvinyl alcohol nanocomposites: Effect of relative humidity and temperature on mechanical performance

Mehdi Tajvidi, Ph.D., Assistant Professor of Renewable Nanomaterials
School of Forest Resources, University of Maine
University of Maine Nanocellulose

• Pilot plant can produce 1 ton per day of CNF at 3% solids

• Distribution of CNC at 12% solids from Forest Product Laboratory in Madison, WI.

• UMaine research scales from nanocellulose study to full-scale wind blade testing.

• UMaine Process Development: umaine.edu/pdc/nanofiber-r-d/

• UMaine Advanced Structures and Composites: composites.umaine.edu
Wet applications

Particleboard

Cellubound

All-cellulose nanocomposites

In-situ polymerization of Nylon 66
CNF vs. CNC

TAPPI (WI3021) is standardizing the terminology

Cellulose Nanocrystal (CNC): A type of cellulose nanofiber with pure crystalline structure, with dimensions of 3 - 10 nm in width, and aspect ratio of greater than 5.

Cellulose Nanofibril (CNF): A type of cellulose nanofiber that contains both crystalline regions and amorphous regions, with dimensions of 5 - 30 nm in width, and aspect ratio usually greater than 50.
Why use CNC and CNF in composites?

- Increased tensile strength properties
- Added dimensional stability in extreme heat and moisture conditions
- Renewable
- Biodegradable
- Broad application
 - medical devices
 - 3D printing
 - structural composites
 - packaging films
 - paper coatings
- Advantage to using nanomaterials in an aqueous system:
 - preserves nanoscale by avoiding drying and reducing agglomeration
CNC / PVA example: RH study

Figure 1. FE-SEMs of electrospun neat PVA fibers (left) and loaded with 15% of cellulose nanocrystals (right) after equilibration at two different conditions of relative humidity, 0 and 98%, as indicated.

From Peresin et al., Biomacromolecules, 2010
OBJECTIVE

- Evaluate the effects of RH and temperature on the mechanical properties of nanocellulose and its composite with PVA
- Study the mechanical properties of all-cellulose nanocomposites
DMA -- Dynamic Mechanical Analyzer

- **Temperature range:**
 - -145 to 600 °C (up to 20°C / min.)

- **Variables:** temperature, time, frequency, stress, force, displacement, strain

- **Sample states:** bulk solid, film, fiber, gel, viscous liquid

- **Interchangeable clamps measure:**
 - modulus (storage, loss, tanδ)
 - damping
 - creep
 - stress relaxation
 - glass transitions
DMA-RH accessory
Preparation of PVA + (CNC or CNF) cast films

5% PVA solubilized in H₂O (90°C, stir 3+ hrs.)
Add suspensions of:

- 11.8% CNC – FPL, Madison WI
- 3% CNF - UMaine PDC

Ultrasonication - 2 minutes to break up agglomerated bundles of CNC and CNF

Casting
Concentrations of cellulose suspensions in films

<table>
<thead>
<tr>
<th>Material</th>
<th>Cellulose material in dry casting (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>2 4 6 8</td>
</tr>
<tr>
<td>CNF</td>
<td>2 4 6 8</td>
</tr>
<tr>
<td>PVA</td>
<td>0 - - -</td>
</tr>
</tbody>
</table>
Casts dried overnight in fume hood

8% CNC
8% CNF
100% PVA
Static Tension Testing

All treatments at 30°C and either 0%RH or 60%RH:

• 8% CNF, 8% CNC
• 2% CNF, 2% CNC
• 100% CNF
• 100% PVA

= 12 TREATMENTS

Each specimen was equilibrated before testing at a tensile load rate of 20 N / minute (18 N maximum)
CNF – 0% R.H. in Static Tension

![Graph showing stress vs. strain for different concentrations of CNF and PVA at 0% R.H.](image-url)
CNF – 60% R.H. in Static Tension
CNC – 0% R.H. in Static Tension

- 8% CNC – 0% R.H.
- 2% CNC – 0% R.H.
- 100% PVA – 0% R.H.
CNC – 60% R.H. in Static Tension

- 8% CNC – 60% RH
- 100% PVA – 60% RH
- 2% CNC – 60% RH
Bar graph for E% reduction in E when RH goes from 0% to 60% of 100%
do this for both CNF and PVA

-40%
-16%

Young’s Modulus (E)

GPa

0.38
0.63

5.62
-16%

6.69
Dynamic Tension Testing – Frequency Sweeps and Temperature sweeps

Frequency Sweeps
– Hz from 1 to 100
– strain fixed at 0.05%
– Temp fixed at 30°C
– 5 different RH values from 0% to 80%

Temperature sweeps
– Hz set at 1
– 30°C to 150°C
– temperature ramp at 2°C per min
– strain 0.1%
– No humidity control
Frequency Sweep – 4% CNC

Storage Modulus

E' (MPa)

0% RH
20% RH
40% RH
60% RH
80% RH

Increased RH

Frequency (Hz)

1 10 100
Modulus Retention Term

\[\text{MRRT} = \frac{(E' \text{ at } 30^\circ\text{C}) - (E' \text{ at } X^\circ\text{C})}{(E' \text{ at } 30^\circ\text{C})} \times 100\% \]
AFM in AMFM mode

100% PVA

Storage Modulus E'
8% CNC

Storage Modulus E'
8% CNF

Storage Modulus
E'
All Cellulose nanocomposites
Mechanical properties of all cellulose nanocomposites

![Graph showing mechanical properties](214x208)

Tensile Modulus (MPa)

Tensile Strength (MPa)

CNC CONTENT (%)

- 0%
- 10%
- 20%
- 30%

TENSILE STRENGTH (MPa)

- 0 to 160

TENSILE MODULUS (MPa)

- 0 to 12,000
Conclusions

- Both cellulose nanomaterials and the PVA are temperature and humidity sensitive
- CNF and CNC improve mechanical properties of PVA at any RH and temperature
- They also improve humidity resistance of the composite formulations
- Cellulose nanomaterials are far less temperature dependent than PVA as shown by the MRT values
- AMFM viscoelastic mapping tool can be used to map surface mechanical properties
- Mechanical properties of CNF films can be significantly improved by the addition of CNC
Acknowledgements

Justin Crouse, Graduate student

Kelly Edwards, Microscopy Specialist at UMaine

Zahra Naghizadeh Mahani, AFM specialist

Thank you!

Questions?