A New Approach to SMC Weight Reduction
Prior approaches to weight reduction using SMC

• Conventional SMC—circa 1.8 specific gravity (sg), weight reduction vs other materials by taking advantage of design flexibility using ribs, gussets.

• Low filler SMC—replacement of calcium carbonate with high-resin demand clays, including nano-clay. Lower feasibility limit circa 1.4 sg with good mechanicals and fair surface quality.

• Glass microsphere SMC—use of hollow glass microspheres to achieve sg of 1.1 or lower. Original approach resulted in non-sandable, non-paintable SMC but recent advances have enabled class A surfaces paintable surfaces.

• Carbon fiber and Carbon/glass hybrid SMC: achieve weight reduction through lower sg reinforcement fiber and through design flexibility for thinner structures due to advantageous stiffness of carbon fiber.
Soy Filler: a new option for weight reduction using SMC

- Used as a direct replacement for calcium carbonate at similar volume fraction loadings.
- Soy filler has 1.1 sg vs 2.7 sg for calcium carbonate.
 - Similar resin demand permits same loading as calcium carbonate
- For a typical semi-structural SMC at 25-30% glass, the soy filler product with comparable volume fraction of filler and glass achieves approximately 1.4 sg.
- Soy filler is not applicable in SMC’s with high-volume-fraction of fiber since those SMC’s use little filler.
- Soy filler can be used in conjunction with glass microspheres to achieve 1.1 sg or lower.
Why Soy Filler?

- Primary driver is cost per cubic inch
- Once economies of scale are achieved, soy filler is expected to be cost per cubic inch neutral with typical grades of calcium carbonate.
- Net effect is to achieve lower specific gravity with little or no premium.

Relative cost per cubic inch comparison:
Environmental benefits

CO2 Sequestration
Support farm economy
Reduce foreign petroleum

Weight Reduction—fuel savings in service
Durable components
Design flexibility

Filler treatment, compounding and molding
Soy Filler: Renewable, plentiful resource

- Soy filler is derived from the hull, a low-value component which has low feed value.
- Primary value is the soy oil, used for food and cooking oil, feedstock for bio-diesel, and for polymers and printing inks.
- The soy meal is also a highly valued component used for high protein component of animal feed and human consumption
- The soy hull is readily available, used mostly as an animal feed extender
- As demand for soy oil and soy meal continue to rise, soy hulls are expected to be plentiful
- For use as soy filler, the soy hulls are ground, heat treated to reduce water absorption in the end product.
PROPERTIES OF SMC WITH SOY FILLER
Mechanical Properties of SMC using various low density approaches

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Soy+ microsphere</th>
<th>Microsphere</th>
<th>Soy filler</th>
<th>Low filler</th>
<th>Standard SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength</td>
<td>MPa</td>
<td>66.8</td>
<td>65</td>
<td>57</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tensile Mod</td>
<td>MPa</td>
<td>7342</td>
<td>8000</td>
<td>10000</td>
<td>8500</td>
<td>15000</td>
</tr>
<tr>
<td>Flex strength</td>
<td>MPa</td>
<td>139</td>
<td>160</td>
<td>160</td>
<td>220</td>
<td>210</td>
</tr>
<tr>
<td>Flex Mod</td>
<td>MPa</td>
<td>6367</td>
<td>7000</td>
<td>9300</td>
<td>8000</td>
<td>10000</td>
</tr>
<tr>
<td>Unnotched Izod</td>
<td>J/m</td>
<td>1048</td>
<td>1100</td>
<td></td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Notched Izod</td>
<td>J/m</td>
<td>820</td>
<td>700</td>
<td>1190</td>
<td>1100</td>
<td>950</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>(NA)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Wt % glass</td>
<td>%</td>
<td>39</td>
<td>41</td>
<td>38</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>Volume % glass</td>
<td></td>
<td>15.9</td>
<td>18.2</td>
<td>19.7</td>
<td>19.7</td>
<td>19.7</td>
</tr>
</tbody>
</table>
Tensile and Flexural Strength of LD SMC's

- Soy+ microsphere
- Microsphere
- Soy filler
- Low filler LD SMC
- Standard R-30

- Tensile strength MPa
- Flex strength MPa
Impact Properties of LD SMC's

Unnotched Izod J/m Notched Izod J/m

Soy+ microsphere Microsphere Soy filler Low filler LD SMC Standard R-30
Stiffness Characteristics of LD SMC's

- Soy+ microsphere
- Microsphere
- Soy filler
- Low filler LD SMC
- Standard R-30

Tensile Mod MPa vs Flex Mod MPa
Observations from Mechanical Data

• The soy filler SMC has properties in the same range as the glass microsphere SMC that has seen commercial acceptance in the market for semi-structural applications.

• Use of a low filler loading, high resin demand filler approach yields the better retention of strength values among LD solutions, but the soy filler may be a bit better in modulii retention.

• It is noted that the formulations herein are each optimized to some degree for their applications, they are not structured in strict academic comparisons.
HIGH SPEED INSTRUMENTED IMPACT
High Speed Instrumented Impact

• Since modulus generally has some trade-off with toughness, high speed instrumented impact was used to investigate overall impact characteristics.
High Speed Impact

<table>
<thead>
<tr>
<th>Property</th>
<th>Soy+ microsphere</th>
<th>Microsphere</th>
<th>Soy filler</th>
<th>Low filler</th>
<th>Standard SMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak load, lbs</td>
<td>370</td>
<td>418</td>
<td>272</td>
<td>453</td>
<td>416</td>
</tr>
<tr>
<td>Deflection at max load, in</td>
<td>0.193</td>
<td>0.180</td>
<td>0.160</td>
<td>0.194</td>
<td>0.163</td>
</tr>
<tr>
<td>Deflection at failure, in</td>
<td>0.307</td>
<td>0.366</td>
<td>0.388</td>
<td>0.406</td>
<td>0.414</td>
</tr>
<tr>
<td>Energy to max load, ft-lbf</td>
<td>2.87</td>
<td>3.22</td>
<td>1.90</td>
<td>3.99</td>
<td>3.61</td>
</tr>
<tr>
<td>Total energy, ft-lbf</td>
<td>5.19</td>
<td>7.21</td>
<td>5.28</td>
<td>9.43</td>
<td>9.55</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>
High Speed Instrumented Impact

- Soy+ microsphere
- Microsphere
- Soy filler
- Low filler
- Standard SMC

Deflection at max load, in
Deflection at failure, in
High Speed Instrumented Impact

- Energy to max load, ft-lbf
- Total energy, ft-lbf

Soy+ microsphere
Microsphere
Soy filler
Low filler
Standard SMC

Suc·cess [sək' ses]
Our definition of success is helping you achieve yours.
Summary

• Soy Filler offers a new avenue for SMC weight reduction, with potential economic advantage once economies of scale are achieved with the soy filler.

• Soy Filler offers the added benefit of sequestering carbon, and supporting the US farm economy.

• Replacement of conventional SMC with each of the low density approaches requires a balance between part design and specific material properties.

• The low filler SMC approach yields properties most in line with conventional SMC but has a floor around 1.4 SG for a 20% volume fraction of glass fiber.

• Glass microsphere SMC and soy filler SMC in combination with glass microspheres offer the greater weight reduction opportunities where design allowables fit.
Acknowledgements

Our Soy Checkoff
Project #2456 & 1340-512-5275

Ohio Soybean Council

University of Akron

success [səkˈses]
Our definition of success is helping you achieve yours.