Material Properties of Injection Molded Glass and Carbon Fiber Reinforced Thermoplastic Composites – A Review

SPE Automotive Composites Conference & Exhibition, Sept. 7-9 2016

Mark Cieslinski, BASF - Advanced Materials & Systems Research
Outline

1 About BASF

2 Why Composites?

3 What Influences Composite Properties?

4 Summary

© 2016 BASF Corporation
Outline

1 About BASF

2 Why Composites?

3 What Influences Composite Properties?

4 Summary
BASF – We create chemistry

- Our chemistry is used in almost all industries
- We combine economic success, social responsibility and environmental protection
- Sales 2015: €70,449 million
- EBIT 2015: €6,739 million
- Employees (as of December 31, 2015): 112,435
- 6 Verbund sites and 376 other production sites
Research and development at a glance

Research for the future: With our innovative products and processes, we provide sustainable solutions for global challenges.

- Expenditures for research and development €1,953 million, world leader in chemical industry
- Around 3,000 research projects
- Strongest innovation power in the chemical industry (No.1 in the Patent Asset Index™)
- Target 2015 achieved: around €10 billion sales with new and improved products or applications that had been on the market since 2011
Advanced Materials & Systems: Global research Verbund

© 2016 BASF Corporation
Metal replacement: comparison with engineering plastics compounds

Steel and Al-alloys: Data taken from Hütte (1996)

<table>
<thead>
<tr>
<th>Material</th>
<th>(\rho) g/cm³</th>
<th>(T_m) °C</th>
<th>E GPa</th>
<th>(\sigma) MPa</th>
<th>(K_{IC}) MN/m³²</th>
<th>(\lambda) W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel (ferritic, austenitic)</td>
<td>7.8</td>
<td>1150 (FeC4)</td>
<td>195 - 210</td>
<td>440 - 750</td>
<td>50 - 200</td>
<td>30 - 60</td>
</tr>
<tr>
<td>Steel (High-strength)</td>
<td>7.8</td>
<td>-</td>
<td>195 - 210</td>
<td>1300 - 2100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al alloys</td>
<td>2.7</td>
<td>577 (AlSi12)</td>
<td>60 - 80</td>
<td>300 - 700</td>
<td>23 - 45</td>
<td>121 - 237</td>
</tr>
<tr>
<td>PA66 GF50 (23 °C, dry conditions)</td>
<td>1.56</td>
<td>260</td>
<td>16.8</td>
<td>240</td>
<td>5 - 10</td>
<td>(~ 0.5)</td>
</tr>
</tbody>
</table>

- Low density even for highly glass fiber filled PA compound is advantageous
- Tensile strength of PA compound is high and comparable to “soft“ Al alloys
- Stiffness and fracture toughness as well as melting point and thermal conductivity much lower compared to metals

© 2016 BASF Corporation
Specific tensile strength & stiffness of PA66 compounds

- Specific tensile strength of highly GF-filled PA compounds similar to Al-alloys and higher than steel
- Specific stiffness of PA/GF compounds further enhanced by carbon fibers

Comparison of glass & carbon fibers

- Specific tensile strength
- Specific stiffness

© 2016 BASF Corporation
Question: What injection molding material do we use for our application?

- Short or Long fiber?
- Glass or Carbon fiber?
- Resin?

How do these variables transfer to mechanical properties?

- Modulus
- Strength
- Impact
- Fatigue
Designations of Fiber Lengths

- **Short fibers** – incorporated into thermoplastic via extrusion compounding, typical average fiber length < 0.5 mm
- **Long fibers** – composites retain fiber length in molded part > 1.0 mm, pultrusion or wet-lay processes are used
- Extrusion/Injection molding reduces fiber length to a log-normal distribution, described by:
 - Number average fiber length, \(L_n = \frac{\sum N_i L_i}{\sum N_i} \)
 - Weight average fiber length, \(L_w = \frac{\sum N_i L_i^2}{\sum N_i L_i} \)
 - Aspect Ratio = \(\frac{\text{Length}}{\text{Diameter}} \)
Fiber Length Trends

Modulus – Cox model
Strength – Kelly-Tyson Model
Impact – Thomason-Vlug model

10-40 wt% glass – Polypropylene produced via wet-lay process
Normalization trend appears independent of concentration for Flexural and Tensile data

© 2016 BASF Corporation
Injection Molded Composites
Long Glass Fiber - Polypropylene

Fiber length decreases with increasing concentration

Modulus linearly increasing with concentration (except >65wt%)

Ultramid® Polyamide Glass Fiber Materials

Modulus

<table>
<thead>
<tr>
<th>Material</th>
<th>15% Short Glass</th>
<th>25% Short Glass</th>
<th>30% Short Glass</th>
<th>35% Short Glass</th>
<th>40% Short Glass</th>
<th>50% Short Glass</th>
<th>40% Long Glass</th>
<th>50% Long Glass</th>
<th>60% Long Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA66</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Ultradim® A</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Ultradim® B</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Strength

<table>
<thead>
<tr>
<th>Material</th>
<th>15% Short Glass</th>
<th>25% Short Glass</th>
<th>30% Short Glass</th>
<th>35% Short Glass</th>
<th>40% Short Glass</th>
<th>50% Short Glass</th>
<th>40% Long Glass</th>
<th>50% Long Glass</th>
<th>60% Long Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA66</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Ultradim® A</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Ultradim® B</td>
<td>15</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Parallel trends in flexural and tensile moduli and strength

Modulus independent of fiber lengths in test specimens

© 2016 BASF Corporation
Ultramid® Impact properties

Ultramid® A

Ultramid® B

Long fiber advantage → Impact performance

© 2016 BASF Corporation
Short/Long Creep Performance
Ultramid® A - 50% glass fiber

Creep performance differences more pronounced at higher time scales and higher loadings
Fatigue Behavior

Short Glass Fibers

- Parallel to Flow Direction in Injection Molded Plaque
- Fracture Toughness

Increasing fiber content increases toughness while inhibiting crack growth

Short & Long Glass Fibers

- Ultramid® A 50% glass fiber

Fatigue performance extend due to long fibers creating a fiber network

Fiber Diameter Effects (PA66-30wt% glass)

<table>
<thead>
<tr>
<th>Fiber Diameter, µm</th>
<th>Average Length</th>
<th>Average Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln, mm</td>
<td>Lw, mm</td>
</tr>
<tr>
<td>10</td>
<td>0.34</td>
<td>0.55</td>
</tr>
<tr>
<td>11</td>
<td>0.4</td>
<td>0.65</td>
</tr>
<tr>
<td>14</td>
<td>0.49</td>
<td>0.73</td>
</tr>
<tr>
<td>17</td>
<td>0.56</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Strength – some decrease (14%)

Modulus – no change (2%)

Notched Impact – slight increase (7%)

Unnotched Impact – significant decrease (72%)

© 2016 BASF Corporation
Ultramid® A3W - 40 wt% Short/Long, Glass/Carbon Fiber

Typical properties of glass and Carbon fiber

<table>
<thead>
<tr>
<th></th>
<th>Glass</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, g/cm³</td>
<td>2.5 – 2.6</td>
<td>1.7 – 1.8</td>
</tr>
<tr>
<td>Tensile Modulus, GPa</td>
<td>70 – 80</td>
<td>225 – 275</td>
</tr>
<tr>
<td>Tensile Strength, GPa</td>
<td>1.5 – 3.5</td>
<td>2.5 – 5</td>
</tr>
<tr>
<td>Elongation at Break, %</td>
<td>0.5 – 2</td>
<td>1.8 – 3.2</td>
</tr>
</tbody>
</table>
Relative specific properties to 40% Short Glass Fiber – Ultramid® A

Advantages of carbon fiber become more pronounced for light-weighting applications.

Long glass fiber impact properties not as significant improvement.

Specific [Property] = \frac{[Property]}{Composite Density}
Glass and carbon fiber at equal volume% in polypropylene

<table>
<thead>
<tr>
<th>Property</th>
<th>Carbon</th>
<th>Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter, µm</td>
<td>7.5</td>
<td>13.8</td>
</tr>
<tr>
<td>Tensile Strength, MPa</td>
<td>3950</td>
<td>1956</td>
</tr>
<tr>
<td>Tensile Modulus, GPa</td>
<td>238</td>
<td>78.5</td>
</tr>
</tbody>
</table>

Stiffness – translated from fiber properties
Strength & Impact – less driven by fiber properties more likely aspect ratio & sizing

© 2016 BASF Corporation
Fiber network from long fibers improves modulus at elevated temperatures
Resin Formulation - Ultramid® A

General trends of property improvement with concentration appear to be universal

Some additives necessary for the end-use application can negatively effect properties
General Summary

<table>
<thead>
<tr>
<th>Property</th>
<th>Modulus</th>
<th>Strength</th>
<th>Strain at Break</th>
<th>Notched Impact</th>
<th>Creep</th>
<th>Fatigue</th>
<th>Performance at Higher Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Concentration</td>
<td>🔺</td>
<td>🔺</td>
<td>🔻</td>
<td>🔺</td>
<td>🔺</td>
<td>🔺</td>
<td>🔺</td>
</tr>
<tr>
<td>Increase Fiber Length</td>
<td>-</td>
<td>🔺</td>
<td>🔻</td>
<td>🔺</td>
<td>🔺</td>
<td>🔺</td>
<td>🔺</td>
</tr>
<tr>
<td>Carbon Fiber (relative to glass)</td>
<td>🔺</td>
<td>🔺</td>
<td>🔻</td>
<td>-</td>
<td>🔺</td>
<td>🔺</td>
<td>🔺</td>
</tr>
</tbody>
</table>

Concentration, length and fiber type are not completely independent variables

Properties in the end-use part are largely influenced by **processing**:
- Fiber Orientation
- Fiber Length (aspect ratio)
LEGAL DISCLAIMER

WHILE THE DESCRIPTIONS, DESIGNS, DATA AND INFORMATION CONTAINED HEREIN ARE PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE, THEY ARE PROVIDED FOR GUIDANCE ONLY. BECAUSE MANY FACTORS MAY AFFECT PROCESSING OR APPLICATION/USE, BASF RECOMMENDS THAT THE READER MAKE TESTS TO DETERMINE THE SUITABILITY OF A PRODUCT FOR A PARTICULAR PURPOSE PRIOR TO USE. **NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESCRIPTIONS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF BASF'S TERMS AND CONDITIONS OF SALE. FURTHER, THE DESCRIPTIONS, DESIGNS, DATA, AND INFORMATION FURNISHED BY BASF HEREUNDER ARE GIVEN GRATIS AND BASF ASSUMES NO OBLIGATION OR LIABILITY FOR THE DESCRIPTIONS, DESIGNS, DATA OR INFORMATION GIVEN OR RESULTS OBTAINED, ALL SUCH BEING GIVEN AND ACCEPTED AT THE READER'S RISK.**
We create chemistry for a sustainable future!